EVALUATING THE PERFORMANCE OF CONVOLUTIONAL NEURAL NETWORKS AND HYBRID CNN-SVM MODELS FOR SYMBOL RECOGNITION IN COMPLEX DATASETS
Keywords:
pattern recognition, Intelligent Data Analysis, Machine Learning Algorithms, Convolutional Neural Networks (CNN), Support Vector Machines (SVM), Feature Extraction, Deep Learning, Image Classification, Pattern Recognition, Hybrid Models, k-Nearest Neighbors (k-NN), Random Forest, Optical Character Recognition (OCR), Shape Recognition, Automated Symbol IdentificationAbstract
In this paper, we propose an algorithm for identifying symbols in various contexts using intelligent data analysis methods. With the increasing need for automated systems to process symbolic data from sources such as images, texts, or audio, we explore several state-of-the-art techniques, including machine learning models, pattern recognition, and feature extraction. The proposed method improves symbol identification accuracy by integrating supervised learning with advanced feature engineering. Our results show a significant enhancement in symbol recognition rates compared to traditional approaches.
References
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
Dalal, N., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (Vol. 1, pp. 886–893). IEEE.
Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition, 29(1), 51–59.
Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience.
Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. In 3rd International Conference on Learning Representations (ICLR 2015).
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786), 504-507.
Тоджиев М., Улугмуродов Ш., Ширинбоев Р. Tasvirlar sifatiniyaxshilashning chiziqlikontrast usuli //Современные инновационные исследования актуальные проблемы и развитие тенденции: решения и перспективы. – 2022. – Т. 1. – №. 1. – С. 215-217.
Рахимов Н., Ширинбаев Р., Саидова З. Ma’lumotlarni intellektual tahlillash uchun oldindan tasniflash va yakuniy konvolyutsion neyron tarmog ‘i //Информатика и инженерные технологии. – 2023. – Т. 1. – №. 2. – С. 55-61.
Dilmurod H., Shirinboyеv R. THЕ MАIN THЕORY OF LINЕАR RЕGRЕSSION MODЕLS IN DАTА MINING //Sun’iy Intellekt Nazariyasi va Amaliyoti: Tajribalar, Muammolar va Istiqbollari. – 2024. – С. 143-147.
Rustamovich A. A., Ruzikulovich T. M. R., O‘G‘Li S. R. S. Yongʻinni videotasvirda rangli filtrlash bilan intensivlik oʻzgarishi asosida aniqlash //Илм-фан ва инновацион ривожланиш/Наука и инновационное развитие. – 2023. – Т. 6. – №. 2. – С. 13-21.
Akhatov A. et al. Correction of integrity violations in the video image area using the retinex algorithm //International Journal of Contemporary Scientific and Technical Research. – 2023. – №. Special Issue. – С. 162-172.
Ruzikulovich T. M. et al. Neyron tarmoq algoritmlari yordamida murakkab fondagi belgilarni aniqlash algoritmlari //International Journal of Contemporary Scientific and Technical Research. – 2022. – С. 238-241.
Rustamovich A. A. et al. Konvolyutsion neyron tarmog ‘i asosida video tasvirdan yong ‘inni erta aniqlash //International Journal of Contemporary Scientific and Technical Research. – 2022. – С. 128-132.
Shirinboyev R. et al. Image segmentation by otsu method //International Journal of Contemporary Scientific and Technical Research. – 2023. – №. Special Issue. – С. 64-72.
N.Raximov, J.Kuvandikov, D.Khasanov, “The importance of loss function in artificial intelligence”, International Conference on Information Science and Communications Technologies (ICISCT 20222), DOI: 10.1109/ICISCT55600.2022.10146883
Khasanov Dilmurod, Tojiyev Ma’ruf, Primqulov Oybek., “Gradient Descent In Machine”. International Conference on Information Science and Communications Technologies (ICISCT), https://ieeexplore.ieee.org/document/9670169
N.Raximov, B.Esanovna, O.Primkulov. Аxborot tizimlаridа mаntiqiy xulosаlаsh sаmаrаdorligini oshirish yondаshuvi.Algoritmlar va dasturlashning dolzarb muammolari mavzusidagi xalqaro ilmiy-amaliy anjuman Qarshi- 2023 y. –B. 444-447
N.Raximov, O.Primqulov, B.Daminova,“Basic concepts and stages of research development on artificial intelligence”, International Conference on Information Science and Communications Technologies (ICISCT), www.ieeexplore.ieee.org/document/9670085/metrics#metrics
Rahimov Nodir, Khasanov Dilmurod. (2022). The Mathematical Essence Of Logistic Regression For Machine Learning. https://doi.org/10.5281/zenodo.7239169