Selection of features in the problems of personal identification by keystroke dynamics

Authors

  • Rasulmukhamedov Makhamadaziz Tashkent State Transport University
  • Gaffarov Nuraddin Research Institute of Digital Technologies and Artificial Intelligence
  • Mirzaeva Gulmira Research Institute of Digital Technologies and Artificial Intelligence

Keywords:

Identity authentication, Feature extraction, Temporal features, Frequency features, Strongly related features, Representative features

Abstract

In this article examines the problem of identifying features when authenticating the identity of a user of computer systems based on keyboard handwriting. To solve this problem, a feature extraction method is proposed. The main idea of this method is to search for a set of representative features. In this case, the search for representative features is carried out in two stages. At the first stage, time and frequency features are determined. At the second stage, the following are determined: 1) a subset of strongly related features 2) a set of representative features. Experimental studies have been conducted to assess the performance of the proposed method. The results of the experimental study showed that the proposed method of feature extraction showed high accuracy in solving the problem of personal authentication by keyboard handwriting.

References

Fazilov Sh.Kh., Mirzaev N.M., Radjabov S.S., and Mirzaeva G.R. “Determination of representative features when building an extreme recognition algorithm,” Journal of Physics: Conference Series., vol. 1260, pp. 1-8, Sep. 2019.

Braga-Neto U.M., Dougherty E.R. “Error Estimation for Pattern Recognition,” Springer, July 2015..

Шарипов Р.Р., Катасёв А.С., Кирпичников А.П. Методы анализа клавиатурного почерка пользователей с использованием эталонных гауссовских сигналов // Вестник технологического университета. - 2016. -Т.19. №13. - С. 157-160.

Ямченко Ю.В. Методы решения задач аутентификациии идентификации пользователя на основе анализа клавиатурного почерка // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2020. № 1. –С. 124 – 138.

Расулмухамедов Махамадазиз Махамадаминович, Гаффаров Нуриддин Ёркин Угли, & Ташметов Комолиддин Шухрат Угли (2023). Распознавание клавиатурного почерка на веб-приложении. Universum: технические науки, (5-1 (110)), 64-68.

Published

2024-09-11

How to Cite

Rasulmukhamedov, M., Gaffarov, N., & Mirzaeva, G. (2024). Selection of features in the problems of personal identification by keystroke dynamics. DTAI – 2024, 1(DTAI), 60–61. Retrieved from https://dtai.tsue.uz/index.php/DTAI2024/article/view/uz2