DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE https://dtai.tsue.uz/index.php/dtai <p>The Journal is a publication specializing in the field of digital economy and information technologies.</p> <p><strong>Raqamli transformatsiya va sun’iy intellekt ilmiy jurnali</strong></p> Tashkent State University of Economics en-US DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE 3030-3346 USING CONVOLUTIONARY NEURAL NETWORK (CNN) TO DETECT CANCER FROM MRI IMAGES https://dtai.tsue.uz/index.php/dtai/article/view/v3i31 <p>This study explores the step-by-step process of using a Convolutional Neural Network (CNN) model for detecting breast cancer from MRI images. Initially, the images undergo preprocessing, including denoising and normalization to improve quality. CNNs are highly effective in image processing, with each layer identifying different features of the image. Convolutional operations extract these features, and then neural networks analyze them to determine the presence or absence of cancer. Mathematically, the CNN model evaluates images using convolutional layers, activation functions, and loss functions. Parameters are optimized through gradient descent methods. The model’s performance was evaluated using metrics like accuracy (92%), sensitivity (89%), and specificity (94%). Compared to other algorithms like Random Forest (85% accuracy) and SVM (87% accuracy), CNN outperformed them, though it required more computational time (1200 seconds vs. 800 and 950 seconds for Random Forest and SVM, respectively). This model can be applied in clinical practice, helping physicians make quick and reliable diagnoses. The combination of MRI imaging and artificial intelligence significantly improves breast cancer diagnosis and offers new opportunities for detecting other oncological diseases in the future.</p> Sayyora Iskandarova Shoxrux Turakulov Dilshodbek Sotvoldiyev Copyright (c) 2025 Iskandarova Sayyora, Turakulov Shoxrux, Sotvoldiev Dilshodbek https://creativecommons.org/licenses/by/4.0 2025-06-03 2025-06-03 3 3 1 7 ЭВОЛЮЦИЯ СИСТЕМ АНАЛИЗА ДАННЫХ СВОЙСТВ КОМПОНЕНТОВ И РЕЖИМОВ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА https://dtai.tsue.uz/index.php/dtai/article/view/v3i32 <p style="margin: 0cm; text-align: justify;">В статье рассматривается эволюция систем анализа данных, применяемых для оценки свойств компонентов и режимов технологических процессов. Авторы прослеживают развитие этих систем от этапов механизации и автоматизации до интеграции человеко-машинных управляющих систем. Обосновывается важность системного анализа как метода, расширяющего возможности кибернетики в исследовании сложных, многоуровневых объектов, включая производственные и управленческие процессы. Раскрываются принципы кибернетики, такие как обязательность обратной связи и необходимое разнообразие, а также роль моделей, включая модель «черного ящика», в описании и управлении системами. Отдельное внимание уделено роли первичных данных и технологии их однократного ввода в современных интегрированных информационных системах.</p> Дмитрий Суворов Муротжон Базарбаев Copyright (c) 2025 Суворов Дмитрий Наумович, Базарбаев Муротжон Холмамат угли https://creativecommons.org/licenses/by/4.0 2025-06-04 2025-06-04 3 3 8 11 AUTOMATED DIAGNOSIS OF BREAST CANCER FROM MRT IMAGES USING DEEP LEARNING ALGORITHMA https://dtai.tsue.uz/index.php/dtai/article/view/v3i33 <p>Breast cancer remains one of the most prevalent oncological diseases globally, and its early diagnosis is critical for improving survival rates. This study investigates the efficacy of deep learning algorithms for the automated diagnosis of breast cancer using magnetic resonance imaging (MRI). A dataset of 400 MRI images was utilized, comprising 250 images with cancerous regions and 150 normal images, with 2800 cancerous regions annotated. The images underwent preprocessing with Reinhard color normalization to address brightness variations. The dataset was split into 70% training, 20% validation, and 10% testing sets. A deep learning model was designed, featuring seven convolutional blocks, each with 2D convolution, ReLU activation, MaxPooling, dropout, and batch normalization, followed by feature concatenation. A recurrent layer, using LSTM to capture temporal dependencies, processed the concatenated features, which were then passed through dense layers, dropout, batch normalization, and a softmax output for classification. Two advanced object detection models, YOLOv8 and RetinaNet-DDOD, were tested. YOLOv8 achieved a mean Average Precision (mAP@0.5) of 87.5% with faster processing (0.05 seconds), while RetinaNet-DDOD outperformed it with 92.8% mAP@0.5, demonstrating higher accuracy. Mathematical models, including CloU and focal loss functions, enhanced detection of cancerous regions. RetinaNet-DDOD excelled in identifying dense and small lesions, whereas YOLOv8 performed better on simpler images. Healthy images were detected with 93.3% accuracy, and cancerous images with 88.0%, though an 8.0% false negative rate highlights challenges with small lesions. Compared to traditional manual analysis, automated systems showed superior speed and precision, underscoring their potential in clinical diagnostics and suggesting future improvements through dataset expansion.</p> Shoxrux Turakulov Dilshodbek Sotvoldiyev Copyright (c) 2025 Iskandarova Sayyora, Turakulov Shoxrux, Sotvoldiev Dilshodbek https://creativecommons.org/licenses/by/4.0 2025-06-04 2025-06-04 3 3 12 19 HYBRID DEEP LEARNING APPROACH FOR BREAST CANCER DETECTION USING MRI IMAGES COMBINING CNN WITH SVM AND RANDOM FOREST FOR ENHANCED ACCURACY https://dtai.tsue.uz/index.php/dtai/article/view/v3i34 <p>This study proposes a hybrid deep learning framework for detecting breast cancer from MRI images by integrating Convolutional Neural Networks (CNNs) with Support Vector Machines (SVM) and Random Forest (RF) algorithms. The methodology leverages the feature extraction capabilities of CNNs to identify intricate patterns in MRI images, followed by classification using SVM and RF to enhance diagnostic accuracy. The process begins with preprocessing steps, including denoising and normalization, to improve image quality. A pre-trained CNN model, EfficientNet-B4, extracts high-level features from the images, which are then fed into SVM and RF for classification. The hybrid model was trained and validated on a dataset of 1,500 MRI images, achieving a validation accuracy of 96.8%, sensitivity of 94.5%, and specificity of 95.2%. Compared to standalone CNN (92% accuracy), SVM (87%), and RF (85%), the hybrid approach significantly improves performance, though it requires more computational time (1,300 seconds vs. 950 and 800 seconds for SVM and RF, respectively). The results demonstrate the model’s ability to generalize well, with a low validation loss of 0.02, indicating minimal overfitting. This hybrid framework offers a robust tool for clinical applications, assisting radiologists in early breast cancer diagnosis and potentially improving patient outcomes. Future work will focus on optimizing computational efficiency and validating the model on larger, diverse datasets to ensure real-world applicability. The combination of CNN with SVM and RF highlights the potential of hybrid algorithms in medical imaging.</p> Sayyora Iskandarova Shoxrux Turakulov Copyright (c) 2025 Iskandarova Sayyora Nurmamatovna, Turakulov Shoxrux Xudayarovich https://creativecommons.org/licenses/by/4.0 2025-06-04 2025-06-04 3 3 20 25 YOMG‘IR IZLARINI OLIB TASHLASH ALGORITMLARI TAHLILI https://dtai.tsue.uz/index.php/dtai/article/view/v3i35 <p>Yomg‘ir tasvirlarda va videolarda keskin tebranishlarini keltirib chiqaradi va tashqi ko‘rish tizimlarining ishlashini yomonlashtiradi. Bu intensivlikning o‘zgarishi turli omillarga, masalan, kamera parametrlariga, yomg‘irning xususiyatlariga va sahna yorug‘ligiga bog‘liq. Biz yomg‘irning xususiyatlari - uning kichik tomchi o‘lchami, yuqori tezligi va past zichligi - uning ko‘rinishini kamera parametrlariga, masalan, ekspozitsiya vaqti va maydon chuqurligiga kuchli bog‘liqligini ko‘rsatamiz. Biz yomg‘irning xususiyatlari - uning kichik tomchi o‘lchami, yuqori tezligi va past zichligi - uning ko‘rinishini kameraning ta’sir vaqti va maydon chuqurligi kabi parametrlariga juda bog‘liq qilishini ko‘rsatamiz. Biz bu parametrlarni sahna ko‘rinishini o‘zgartirmasdan yomg‘ir ta’sirini kamaytirish yoki hatto bartaraf etish uchun tanlash mumkinligini ko‘rsatamiz. Aksincha, kamera parametrlarini yomg‘irning vizual effektlarini yaxshilaydigan tarzda sozlash ham mumkin. Bu yomg‘ir tezligini bir zumda o‘lchash imkonini beruvchi kameraga asoslangan arzon va portativ yomg‘ir o‘lchagichni ishlab chiqish uchun ishlatilishi mumkin.</p> Maftuna Bekmirzayeva Ziyoda Norqulova Obidjon Bekmirzayev Copyright (c) 2025 Bekmirzayeva Maftuna, Norqulova Ziyoda, Bekmirzayev Obidjon https://creativecommons.org/licenses/by/4.0 2025-06-04 2025-06-04 3 3 26 32 HUDUDIY O‘RMON XO‘JALIGI KOMPLEKSI RESURSLARINI BOSHQARUV TIZIMINI RIVOJLANTIRISH OMILLARI https://dtai.tsue.uz/index.php/dtai/article/view/v3i36 <p>Ushbu maqolada o‘rmon kompleksi samaradorligini belgilovchi omillar tizimlashtiriladi, “hududiyviy o‘rmon kompleksini boshqarish” tushunchasining ta'rifiga aniqlik kiritiladi, o‘rmon resurslaridan foydalanish samaradorligini oshirishni ta'minlashi kerak bo‘lgan hududiyviy o‘rmon kompleksini rivojlantirishni boshqarish mexanizmini takomillashtirish tamoyillari ishlab chiqiladi, hududiy o‘rmon kompleksini rivojlantirishga ta’sir qiluvchi shart-sharoitlar va omillar shakllantiriladi, hududiyviy o‘rmon kompleksini rivojlantirish modelini ishlab chiqadi.</p> Gulchexra Nazarova Abbos Boboqulov Adxamjon To‘xtasinov Copyright (c) 2025 Nazarova Gulchexra Nurmuxanbetovna, Boboqulov Abbos Dilshod o‘g‘li, To‘xtasinov Adxamjon Ilxomjon o‘g‘li https://creativecommons.org/licenses/by/4.0 2025-06-04 2025-06-04 3 3 33 41 IMAGE ENHANCEMENT METHODS AND ALGORITHMS FOR OBJECT RECOGNITION USING ARTIFICIAL INTELLIGENCE https://dtai.tsue.uz/index.php/dtai/article/view/v3i37 <p>Object recognition using artificial intelligence (AI) has undergone rapid development due to advances in deep learning and computer vision. Despite the increasing robustness of recognition algorithms such as YOLOv5 and Faster R-CNN, the performance of these models is still significantly influenced by the quality of input images. Low-resolution, noisy, or poorly contrasted images often result in reduced detection accuracy, particularly in real-world environments where image degradation is common. To address this challenge, this paper presents a comprehensive investigation into modern image enhancement methods and algorithms designed to improve the quality of images prior to recognition. We focus on three main categories of enhancement techniques: AI-based super-resolution, image denoising using convolutional neural networks, and adaptive contrast enhancement. Each method is evaluated in the context of its impact on object detection performance using benchmark datasets. Experimental results indicate that preprocessing images with these enhancement methods leads to a substantial increase in recognition accuracy and robustness, thus validating their importance in end-to-end intelligent vision systems.</p> Javlonbek Saydazimov Shoxrux Turaqulov Jahongir Toshpo’latov Copyright (c) 2025 Saydazimov Javlonbek Karimovich, Turaqulov Shoxrux Xudayarovich, Toshpo’latov Jahongir Ne’mat o’g’li https://creativecommons.org/licenses/by/4.0 2025-06-04 2025-06-04 3 3 42 46 SUN’IY INTELLEKT TIZIMLARIDA O‘QITILGAN MODELNI HIMOYALASH ARXITEKTURALARI https://dtai.tsue.uz/index.php/dtai/article/view/v3i38 <p>Sun'iy intellekt (SI) sohasining jadal rivojlanishi bilan o‘qitilgan modellarni himoyalash masalasi tobora dolzarb muammoga aylanmoqda. Ushbu modellar katta hajmdagi ma'lumotlar va yuqori hisoblash resurslari asosida yaratilgan qimmatli intellektual mulk sifatida ruxsatsiz foydalanish, ko‘chirish yoki hujumlardan himoyalanishni talab qiladi. Mazkur maqolada SI tizimlarida o‘qitilgan modellarni himoyalash uchun qo‘llaniladigan asosiy arxitekturalar tahlil qilinadi. Tadqiqotning maqsadi ushbu usullarning samaradorligini va SI ilovalarining o‘ziga xos talablariga muvofiqligini baholashdir.</p> Suhrobjon Bozorov Copyright (c) 2025 Bozorov Suhrobjon Mumin o‘g‘li https://creativecommons.org/licenses/by/4.0 2025-06-04 2025-06-04 3 3 47 51 INSONNING MUVOZANAT HOLATINI O‘LCHASH UCHUN ROMBERG TESTINI KO‘RIB CHIQISH https://dtai.tsue.uz/index.php/dtai/article/view/v3i39 <p>Ushbu maqolada Romberg testi haqida ma’lumotlar, bunday testdan qanday foydalanish va kimlarda foydalanish qanday amalga oshirilishi, Romberg testida foydalaniladigan qurilmalar haqida ma’lumotlar keltirib o‘tilgan.</p> Kudratjon Zohirov Gulmira Pardayeva G‘olib Berdiyev Feruz Ro‘ziboyev Copyright (c) 2025 Zohirov Qudratjon Rafiqovich, Pardayeva Gulmira Abdunazarovna, Berdiyev G‘olib Rashidovich, Ro‘ziboyev Feruz Yusufboy o‘g‘li https://creativecommons.org/licenses/by/4.0 2025-06-04 2025-06-04 3 3 52 57 COWRIE HONEYPOT LOGLARI VA BELGILARI ASOSIDA HUJUMLARNI ANIQLASH HAMDA TAHLIL QILISH https://dtai.tsue.uz/index.php/dtai/article/view/v3i310 <p>Brute force hujumi kompyuter tizimiga ruxsatsiz kirish uchun hali ham keng qo‘llaniladigan hujumlardan biridir. Brute force, shuningdek, eng xavfli hujum hisoblanib, tizimning nazoratdan chiqishi katta xavf tug‘diradi. Brute force hujumlarini tekshirish kuchli kompyuter tarmoq himoya tizimlarini qurish uchun foydalidir. Ushbu tadqiqotda Snort intrusiyani oldini olish tizimi sifatida, Cowrie Honeypot esa Brute force hujumi sodir bo‘lganda paydo bo‘ladigan anomalliklarni tekshirish vositasi sifatida ishlatilgan. Ushbu tadqiqotning maqsadi Cowrie Honeypot loglarini tekshirish natijalariga asoslanib, Snort qoida belgilarining Brute force hujumlariga qarshi samaradorligini oshirishdan iborat. Olingan natijalarga ko‘ra, Snort qoida belgilari aniqlash qobiliyatini muvaffaqiyatli yaxshiladi va bir xil paketni moslashtirish uchun qisqa ishlash vaqtini talab qiladi: Hydra hujumida 3,5 mikrosekund, Medusa hujumida 3,8 mikrosekund va Ncrack hujumida 2,3 mikrosekund.</p> Аnvаrxоn Mаjidоv Copyright (c) 2025 Mаjidоv Аnvаrxоn Mаxmudxоn о‘g‘li https://creativecommons.org/licenses/by/4.0 2025-06-05 2025-06-05 3 3 58 65 NUTQ SIGNALLARINI NORMALLASHTIRISH ALGORITMLARI https://dtai.tsue.uz/index.php/dtai/article/view/v3i311 <p>Nutq signalining amplitudasi turli tashqi va ichki omillar ta’sirida o‘zgarishi mumkin. Ushbu maqolada nutq signallarini normallashtirish algoritmlari tahlil qilinib, ularning asosiy tamoyillari, energiya va chastota xususiyatlari, shuningdek, VAD (Voice Activity Detection) algoritmi yordamida nutq sohalarini ajratish usullari ko‘rib chiqilgan. Bundan tashqari, ekstremumlar tarqalishiga asoslangan nutq segmentatsiyasi usuli taklif qilinib, uning samaradorligi neyron tarmoqlar yordamida baholangan. Tadqiqot natijalari shuni ko‘rsatadiki, taklif etilgan yondashuv turli shovqinli muhitlarda ham nutq va fon xalaqitlarini samarali ajrata oladi.</p> Narzullo Mamatov Xurshid Dusanov Copyright (c) 2025 Mamatov Narzullo Solidjonovich, Dusanov Xurshid Toshpulotovich https://creativecommons.org/licenses/by/4.0 2025-06-05 2025-06-05 3 3 66 70 IMO-ISHORA TILINI TANIB OLISH: USULLAR VA MODELLAR TAHLILI https://dtai.tsue.uz/index.php/dtai/article/view/v3i313 <p>Ushbu maqolada imo-ishora tilini elektromiografik signallari asosida tanib olish sohasidagi asosiy usullar va modellar tahlil qilinib, imo-ishora tilining turli modellari va ularning o‘zaro farqlari batafsil ko‘rib chiqilgan. Shuningdek, EMG signallarini qayd etuvchi qurilmalar tasnifi keltirilib, ularning texnik xususiyatlari taqqoslangan. Maqola doirasida imo-ishora tilini tanib olishga oid ilmiy adabiyotlarning yillar kesimidagi rivojlanishi tahlili amalga oshirilgan. EMG orqali imo-ishora tilini tanib olish metodlarining qo‘llanilishi tahlili ushbu sohaning zamonaviy tendensiyalarini ko‘rsatadi. Mazkur tahlillar imo-ishora tilini tanib olishda samarali modellarni aniqlash va ularni real amaliyotga tatbiq etishda muhim ilmiy asos yaratadi.</p> Kudratjon Zohirov Mamadiyor Sattorov Sardor Boyqobilov Mirjaxon Temirov Feruz Ro‘ziboyev Quvonchbek Madatov Copyright (c) 2025 Qudratjon Rafiqovich Zohirov, Mamadiyor Egamberdiyevich Sattorov, Sardor Xoliqul o‘g‘li Boyqobilov, Mirjaxon Mirzoxid o‘g‘li Temirov, Feruz Yusufboy o‘g‘li Ro‘ziboyev, Quvonchbek Geldiyor o‘g‘li Madatov https://creativecommons.org/licenses/by/4.0 2025-06-05 2025-06-05 3 3 77 93 ИНТЕЛЛЕКТУАЛЬНЫЙ АНАЛИЗ НЕЧЕТКОЙ БИПОЛЯРНОЙ ИНФОРМАЦИИ В КЛИНИЧЕСКОЙ МЕДИЦИНЕ: ПОДХОДЫ И РЕШЕНИЯ https://dtai.tsue.uz/index.php/dtai/article/view/v3i314 <p>Данная статья посвящена актуальной проблеме интеллектуального анализа нечёткой биполярной информации в клинической медицине. В условиях постоянно растущего объема и сложности медицинских данных, характеризующихся неопределённостью, неполнотой и противоречивостью, традиционные методы анализа часто оказываются неэффективными. Мы исследуем теорию биполярных нечётких множеств как мощный инструмент для адекватного моделирования как положительных, так и отрицательных аспектов медицинских знаний и данных.</p> <p>Работа сосредоточена на двух ключевых направлениях представление биполярных нечётких знаний и применение методов интеллектуального анализа данных (Data Mining) в медицинской сфере. Мы разрабатываем модели для формализации биполярных нечётких медицинских терминов, отношений, онтологий и баз правил, а также соответствующие механизмы логического вывода для поддержки клинических решений. В области Data Mining адаптируются и предлагаются новые алгоритмы кластеризации (например, биполярный нечёткий k-means), классификации (например, биполярные нечёткие деревья решений, нейронные сети) и поиска ассоциативных правил для эффективной обработки больших массивов биполярных нечётких медицинских данных. Обсуждаются также вопросы повышения вычислительной эффективности и масштабируемости решений за счет использования параллельных и распределенных вычислений.</p> <p>Практическая значимость исследования заключается в повышении точности диагностики, улучшении прогнозирования исходов заболеваний и оптимизации систем поддержки принятия клинических решений, что в конечном итоге способствует совершенствованию персонализированной медицины и качества медицинской помощи.</p> Мадина Шаазизова Copyright (c) 2025 Шаазизова Мадина Элдаровна https://creativecommons.org/licenses/by/4.0 2025-06-14 2025-06-14 3 3 94 99 АЛГОРИТМ ТЕСТИРОВАНИЯ РАДИОСТАНЦИИ НА ТЕПЛООТВОДЕ УСИЛИТЕЛЯ МОЩНОСТИ https://dtai.tsue.uz/index.php/dtai/article/view/v3i315 <p>В статье представлен алгоритм тестирования радиостанции на теплоотводе усилителя мощности, входящего в состав приёмо-передающего блока возимой радиостанции. Диагностика проводится путём измерения напряжений в контрольных точках, расположенных вблизи теплоотвода, с использованием цифрового мультиметра. Алгоритм учитывает два режима работы: при перегреве (с отключёнными контроллерами нагрева) и при нормальном тепловом состоянии. По результатам измерений производится заключение о техническом состоянии кейса усилителя, контроллеров декодера или самого теплоотвода. Алгоритм ориентирован на выявление предотказного состояния отказоопасных элементов.</p> Кирилл Вотинов Copyright (c) 2025 Вотинов Кирилл Алексеевич https://creativecommons.org/licenses/by/4.0 2025-06-14 2025-06-14 3 3 100 104 O‘ZBEK TILIDAGI MATNLARIDAGI PEREFRAZ BIRLIKLARNI ANIQLASH https://dtai.tsue.uz/index.php/dtai/article/view/V3I316 <p>O‘zbek tilidagi matnlari tarkibidagi perefraz juftliklarni aniqlash masalasining yechish ko‘plab NLP masalalarini yechishda qulayliklar yaratib beradi. Bu plagiat tizimlaridan farqli ravish bitta matn tarkibidagi duvlikatlarni aniqlaydi. Perefraz gaplarni aniqlashda ko‘plab ML algoritmlaridan foydalaniladi. Ushbu maqolada gaplarning o‘xshashligini aniqlashda Jaccard algoritmi, so‘zlarning semantic o‘xshashlik to‘plamini tuzishda Glove algoritmidan foydalanish ketma-ketliklari keltirilgan. Perefrazni aniqlash axborot tizimining foydalanuvchilari hamda unda foydalanishda kechadigan jarayonlar haqida ma’lumotlar keltirilgan.</p> Xusniya Axmedova Djamshid Sultanov Copyright (c) 2025 Axmedova Xusniya Xusanovna, Sultanov Djamshid Baxodirovich https://creativecommons.org/licenses/by/4.0 2025-06-15 2025-06-15 3 3 105 111 TRANSPORT POG‘ONA PROTOKOLLARI ASOSIDA SHIFRLANGAN TRAFIKNI TASNIFLASH VA BOSHQARISH MODELI https://dtai.tsue.uz/index.php/dtai/article/view/v3i317 <p>Ushbu maqolada transport pog‘onasi protokollari asosida shifrlangan tarmoq trafikini tasniflash va boshqarish modeli taklif etilgan. Hozirgi kunda shifrlangan trafikning keng tarqalganligi tufayli, trafikni tasniflash va boshqarilishi masalasi dolzarb muammo bo‘lib qolmoqda. Maqolada taklif etilgan yondashuv transport pog‘onasi darajasida protokollarni tahlil qilishga asoslanadi va shifrlangan trafikni tasniflash uchun transport pog‘onasi segmentlarini ishlatadi, bu esa ilgari mavjud bo‘lgan metodlarga qaraganda samarali va tezkor yechimlar yaratadi. Ushbu dasturiy ta'minot yordamida ilovalar darajasidagi protokollarni aniqlashda 98-99% aniqlikka erishilgan. Ushbu model shifrlangan trafikni aniqlashda qo‘llanilishi mumkin bo‘lgan yangi yondashuvlarni taqdim etadi. Bunga qo‘shimcha ravishda, tarmoq trafigini boshqarish mexanizmlari ishlab chiqilib, foydalanuvchi interfeysi orqali oqimlarni nazorat qilish va cheklash imkoniyati yaratildi. Ushbu model tarmoq xavfsizligini ta'minlashda samarali vosita bo‘lib, uning amaliy qo‘llanishi tarmoq infratuzilmasining xavfsizligini yaxshilashga yordam beradi.</p> Feruza Tojieva Copyright (c) 2025 Tojiyeva Feruza Qobiljon qizi https://creativecommons.org/licenses/by/4.0 2025-06-15 2025-06-15 3 3 112 117 ИНСОН ҲИС-ТУЙҒУЛАРИНИ АНИҚЛАШНИНГ НЕЙРОН ТАРМОҚ МОДЕЛЛАРИ https://dtai.tsue.uz/index.php/dtai/article/view/v3i318 <p>Мазкур мақола инсон юз ифодалари орқали унинг ҳис-туйғуларини аниқлашда фойдаланиш мумкин бўлган нейрон тармоқ моделлари таҳлилига бағишланган бўлиб, унда ҳис-туйғуларни автоматик аниқлашга оид классик ва замонавий ёндашувлар таҳлили амалга оширилган. Шунингдек, мақолада чуқур нейрон тармоқлар ва уларни гибрид моделлари орқали ҳис-туйғуларни аниқлашдаги имкониятлари, архитектуралари, трансферли ўқитиш ва оптималлаштириш усуллари ҳам кенг ёритилган. EmotionNet Nano моделини юз ифодаларини аниқлашдаги самарадорлиги, кичик ўлчами ва энергия тежамкорлиги билан бошқа моделлардан ажралиб туриши кўрсатилиб, уни реал вақтда ишлашга мослаштирилган ечим эканлиги таъкидлаб ўтилган. Модел CK+, FER-2013 каби маълумотлар базаларидаги юқори аниқликни таъминлаганлиги уни амалиётда жорий этишга яроқлилигини кўрсатади. Бундан ташқари, Python дастурлаш муҳитидаги мавжуд OpenCV, Dlib, DeepFace, FER ва ERTK/Affectiva каби кутубхоналарни таҳлил қилиниб, уларни ҳис-туйғуларни аниқлашдаги имкониятлари ўрганилган ҳамда турли базаларда тажриба синов натижалари келтирилган. Олинган натижалар OpenCV, Dlib, TensorFlow ва PyTorch каби технологик воситалардан фойдаланиб реал вақтда ишловчи, енгил ва самарали тизимларни яратиш мумкинлигини кўрсатди. Муаллифлар инсон ҳис-туйғуларини аниқлашда нейрон тармоқ моделларидан фойдаланиш нафақат назарий жиҳатдан, балки амалий жиҳатдан ҳам улкан имкониятларга деб ҳисоблайдилар. </p> Нарзилло Маматов Нилуфар Ниёзматова Шахзода Тожибоева Тимур Машанпин Бахромжон Яхяев Copyright (c) 2025 Маматов Нарзилло Солиджонович, Ниёзматова Нилуфар Аълохановна, Тожибоева Шахзода Холдоржон қизи, Машанпин Тимур Васикович, Яхяев Бахромжон Юсуфович https://creativecommons.org/licenses/by/4.0 2025-06-15 2025-06-15 3 3 118 127 TIBBIY TASVIRLAR ASOSIDA TERI KASALLIKLARINI SAMARALI TASNIFLASH USULLARI https://dtai.tsue.uz/index.php/dtai/article/view/v3i319 <p>Teri kasalliklari har yili millionlab insonlarning umriga zomin bo‘layotgan global sog‘liqni saqlash muammolaridan biri bo‘lib qolmoqda. Teri kasalliklarini erta aniqlash, to‘g‘ri va aniq tashxislash kasallikni oldini olishda juda muhim sanaladi. Bugungi kunda teri kasalliklarini erta aniqlash uchun ko‘plab tadqiqotlar olib borilmoqda. Teri kasalliklarini erta bosqichlarda tasniflash uchun kompyuter yordamida avtomatik aniqlash texnikasidan foydalangan holda, olimlar tomonidan bir qancha yechimlar taklif qilinmoqda. Ushbu maqolada an’anaviy mashinani o‘qitish (ML) va chuqur o‘qitish (DL) usullariga asoslangan ba’zi teri kasalliklarini aniqlashning turli usullari o‘rganib chiqildi. O‘rganilgan ma’lumotlar asosida ushbu usullar uchun tadqiqotlar bo‘shlig‘i umumlashtirildi. Tadqiqot davomida kuzatilgan asosiy muammolar teri tasvirini olish, olingan tasvirlarga oldindan qayta ishlov berish muammosi, ma’lumotlar muvozanati muammosi, xususiyatlarni ajratib olish usullarining xilma-xilligi, klassifikator parametrlarini optimallashtirish, tasvir segmentatsiyasi va tasniflashning umumiy texnikasi kabilardan iborat. Umumiy qilib aytganda, ushbu tadqiqot ishining asosiy maqsadi teri kasalliklarini aniqlash uchun qo‘llaniladigan mavjud usullarni o‘rganish. Shuningdek tadqiqotchilarga yaxshiroq yechimlarni topishga yordam beradigan ML va DL modellarini qo‘llash bo‘yicha tadqiqotlar bo‘shlig‘ini to‘ldirish, tasniflashdagi mavjud qiyinchiliklarni va so‘nggi yutuqlarni topish hisoblanadi.</p> Akhmadkhon Bobokhonov Latif Xuramov Akbar Rashidov Copyright (c) 2025 Akhmadkhon Bobokhonov, Latif Xuramov, Akbar Rashidov https://creativecommons.org/licenses/by/4.0 2025-06-16 2025-06-16 3 3 128 139 NATURAL LANGUAGE PROCESSING (NLP) ASOSLARI VA MATNNI TAHLIL QILISH https://dtai.tsue.uz/index.php/dtai/article/view/v3i320 <p>Ushbu maqolada tabiiy tilni qayta ishlash (Natural Language Processing, NLP) texnologiyalarining asosiy tamoyillari va ularning o‘zbek tilida qo‘llanish imkoniyatlari yoritilgan. Maqolada morfologik, sintaktik, semantik va hissiy tahlil bosqichlari keng tahlil qilinib, har bir bosqich uchun zamonaviy mashinani o‘rganish va chuqur o‘rganish asosidagi modellar (BERT, FastText, LSTM va boshqalar) qo‘llanilgan. Tadqiqot davomida 1 milliondan ortiq o‘zbekcha matnlar korpusi tuzilib, prototip dasturiy ta’minot yaratilgan. Natijalar model samaradorligining yuqoriligini (aniqlik 89–92%) ko‘rsatdi. Shuningdek, mavjud lingvistik resurslarning cheklanganligi sababli, kelgusidagi ilmiy izlanishlarda o‘zbek tiliga mos NLP vositalarini yanada rivojlantirish zarurligi asoslab berilgan.</p> Khusan Ikromov Shoxsanam Botirova Copyright (c) 2025 Ikromov Xusan Xolmaxamatovich, Botirova Shoxsanam Uraimjon qizi https://creativecommons.org/licenses/by/4.0 2025-06-16 2025-06-16 3 3 140 146 ВЕТЕРИНАРИЯ ЯГОНА АХБОРОТ ТИЗИМИНИ ИШЛАБ ЧИҚИШДА РАҚАМЛИ ИНТЕГРАЦИЯ https://dtai.tsue.uz/index.php/dtai/article/view/v3i321 <p>Ушбу мақолада Ветеринария ягона ахборот тизимини ишлаб чиқиш жараёнлари ҳақида фикр юритилган бўлиб, унда ахборот тизимнинг модуллари, улар орасидаги муносабатлар, ахборот тизимини ишлаб чиқишда фойдаланилган технологиялар ва рақамли трансформация имкониятлари ёритилган.</p> Qurbon Raxmanov Мохичеҳра Рустамова Copyright (c) 2025 Рахманов Қурбон Содикович, Рустамова Мохичеҳра Яхшибоевна https://creativecommons.org/licenses/by/4.0 2025-06-16 2025-06-16 3 3 147 152 HAS MULTIMODAL LEARNING SUCCEEDED ENOUGH TO CAPTURE CONTEXTUAL MEANING OF HUMAN-TO-HUMAN INTERACTION? A SURVEY https://dtai.tsue.uz/index.php/dtai/article/view/v3i322 <p>Human communication is inherently multimodal, involving speech, facial expressions, gestures, body language, and even contextual cues. Variability and ambiguity make more complex to understand contextual meaning of human-to-human interaction (HHI) as gestures and expressions may have different meanings across cultures and personal habits and styles influence behavior interpretation. To tackle these problems, this article systematically analyses past and current state-of-the-art researches in multimodal learning techniques for contextual understanding of HHI using audio, text, and vision data.</p> Abdulaziz Xo‘jamqulov Javlon Jumanazarov Copyright (c) 2025 Abdulaziz Xo‘jamqulov, Javlon Jumanazarov https://creativecommons.org/licenses/by/4.0 2025-06-16 2025-06-16 3 3 153 170 FACIAL EMOTION RECOGNITION USING SHALLOW CONVOLUTIONAL NEURAL NETWORK AND IMPROVED FER-2013 DATASET https://dtai.tsue.uz/index.php/dtai/article/view/v3i324 <p>It is very easy and simple for a person to sense his inner feelings by looking at his face. That is, in the process of evaluating the emotional state of the person standing in front of him, the human brain sees the facial structure of the other person and can quickly analyze it. However, the ability of a computer to understand and respond to human emotions is considered one of the most difficult problems in the fields of modern computer vision and deep learning. Despite the fact that many studies have been carried out on the evaluation of the emotional state of a person, the proposed solutions are not effective enough. Several convolutional neural network models developed in this field can also solve the problem in a rather narrow scope. In this article, we proposed a shallow convolutional neural network and an augmented and improved fer-20103 dataset in order to speed up the training process and improve previous results. The proposed architecture was tested and analyzed on an updated dataset.</p> Abdurahmon Kurbanov Copyright (c) 2025 Kurbanov Abdurahmon Alishboyevich https://creativecommons.org/licenses/by/4.0 2025-06-17 2025-06-17 3 3 176 183 THE MAIN WAYS TO INTRODUCE DIGITAL TECHNOLOGIES IN EDUCATION https://dtai.tsue.uz/index.php/dtai/article/view/v3i325 <p>This article examines the main pathways of implementing digital technologies in education, analyzing current trends, challenges, and opportunities. The research focuses on theoretical frameworks and literature analysis to identify effective strategies for digital transformation in educational settings.</p> Shakhida Mannanova Copyright (c) 2025 Mannanova Shakhida Gaibullayevna https://creativecommons.org/licenses/by/4.0 2025-06-17 2025-06-17 3 3 184 188 МАТНЛАРНИ ВЕКТОРЛАШНИ TF_IDF КВАНТ АЛГОРИТМИ https://dtai.tsue.uz/index.php/dtai/article/view/v3i326 <p>Ушбу мақолада матнли маълумотларни векторлашда квант ҳисоблашга асосланган TF_IDF алгоритмидан фойдаланиш таклиф этилган. Квант TF_IDF алгоритми ҳар бир сўз квант ҳолатларини векторлар орқали ифодалашга имкон беради. Тажрибалар учун реал шикоятлар тўплами олинган бўлиб, хизмат турлари бўйича таснифланган. Классик ва квант TF_IDF алгоритми орқали шакллантирилган белгилар асосида Decison Tree, Random Forest ва Naive Bayes усулларида таснифлаш амалга оширилган. Натижада квант TF_IDF алгоритми классик алгоритмига нисбатан ўртача 11,9 % юқори аниқликни таъминлашини кўрсатди. Таниб олишда эса Decision Tree усули энг юқори (94 %) аниқликни таъминлади. Тадқиқот квант векторлаш алгоритмларини классик векторлаш алгоритмларига нисбатан самарали ишлашини кўрсатди ҳамда табиий тилни қайта ишлаш вазифаларида истиқболли ечим эканлигини кўрсатди.</p> Нилуфар Ниёзматова Нафисахон Турғунова Copyright (c) 2025 Ниёзматова Нилуфар Аълохановна, Турғунова Нафисахон Махаммаджон қизи https://creativecommons.org/licenses/by/4.0 2025-06-17 2025-06-17 3 3 189 193 EARLY DIAGNOSIS AND PREDICTION OF HEAD AND NECK TUMORS USING ARTIFICIAL INTELLIGENCE (CNN) https://dtai.tsue.uz/index.php/dtai/article/view/v3i327 <p>This work investigates the application of artificial intelligence &nbsp;(AI) to improve the diagnosis and prognosis of head and neck (H&amp;N) cancer. We explore two approaches for H&amp;N tumor segmentation: (i) a comparison of Vision Transformer (ViT)-based and convolutional neural network (CNN)-based models, and (ii) a novel 2D perspective for processing 3D medical images. Furthermore, we propose AI models for patient prognosis, including an ensemble method and a ViT-based framework that integrates imaging and clinical data. Results demonstrate the potential of AI to enhance the accuracy and efficiency of H&amp;N cancer management</p> Sumbul Rajapboyeva Copyright (c) 2025 Rajapboyeva Sumbul Baxrom qizi https://creativecommons.org/licenses/by/4.0 2025-06-17 2025-06-17 3 3 194 198 МАТНЛИ МАЪЛУМОТЛАРДАГИ ХАТОЛИКЛАРНИ БАРТАРАФ ЭТИШНИ КВАНТ АЛГОРИТМИ https://dtai.tsue.uz/index.php/dtai/article/view/v3i328 <p>Ушбу мақолада Левенштейн масофаси, генетик алгоритм ва квант ҳолатлар, Адамар гейти асосида имловий хатоликларни аниқлаш ва бартараф этиш алгоритми таклиф этилган. Бунда генетик алгоритм биологик эволюция тамойиллари орқали оптимал ечимларни аниқлашда қўлланилган ва Левенштейн масофаси хатоликларни аниқлаш ҳамда таҳлил қилишда асосий метрика сифатида олиниб, квант ҳисоблаш элементлари, хусусан, Адамар гейтлари ёрдамида параллел ишлов бериш орқали мақбул ечимни олиш йўли кўрсатиб берилган. Левенштейн масофаси, генетик алгоритм ва квант ҳолатларини қўллаш орқали олинган натижаларни тестлаш орқали дастурни ишлаш даражаси ~67% аниқликни кўрсатмоқда. Ушбу натижага эришиш давомида PSO, Гровер алгоритмларидан фойдаланиб натижалар олинди. Бундан ташқари, ишда матнли маълумотларни интеллектуал таҳлил қилиш жараёнида имловий хатоликларни тузатишда квант ҳисоблашларни қўллаш орқали янги натижаларни олиш ва шу орқали алгоритмларнинг ишини оптималлаштиришга эришиш мумкинлиги кўрсатилган.</p> Нарзулло Маматов Нафисахон Турғунова Абдумалик Хоитқулов Нигора Алмурадова Copyright (c) 2025 Маматов Нарзулло Солиджонович, Турғунова Нафисахон Махаммаджон қизи, Хоитқулов Абдумалик Абдугоппорович, Алмурадова Нигора Абдунабиевна https://creativecommons.org/licenses/by/4.0 2025-06-17 2025-06-17 3 3 199 204 G‘OVAK-ELASTIK MUHITDA SIRT TO‘LQININING TARQALISHINI SONLI MODELLASHTIRISH (ANIZOTROP MUHIT TA’SIRIDA) https://dtai.tsue.uz/index.php/dtai/article/view/v3i329 <p>Mazkur maqolada g‘ovak-elastik va anizotrop xossalarga ega bo‘lgan muhitda sirt to‘lqinlarining tarqalishini matematik va sonli modellashtirish masalasi ko‘rib chiqilgan. Biot nazariyasiga asoslangan tenglamalar tizimi asosida sirt to‘lqinlar uchun chegaraviy shartlar aniqlangan, Finite Difference Method (FDM) orqali ularning sonli yechimi berilgan. Modelda elastiklik, g‘ovaklik, suyuqlik viskozligi kabi parametrlar hisobga olingan. Kompyuter modellashtirish orqali to‘lqin tarqalishidagi dispersiya va amplituda o‘zgarishlari tahlil qilingan.</p> Muxriddin Quzratov Copyright (c) 2025 Quzratov Muxriddin Akram o‘g‘li https://creativecommons.org/licenses/by/4.0 2025-06-17 2025-06-17 3 3 205 209 XORIJIY SAYYOHLAR TASHRIF QARORIGA IJTIMOIY MEDIANING TA’SIRI: TAHLIL VA NATIJALAR https://dtai.tsue.uz/index.php/dtai/article/view/v3i330 <p>Ushbu tadqiqotda xorijiy sayyohlarning muayyan manzilga tashrif buyurish qaroriga ijtimoiy medianning ta’siri o‘rganildi. Ijtimoiy tarmoqlar turizm marketingida yangi kuch sifatida shakllanib, sayyohlarning axborot izlash va tanlov jarayonlarini tubdan o‘zgartirmoqda. Maqolada so‘nggi yillarda olib borilgan ilmiy tadqiqotlar va so‘rovnomalar asosida ijtimoiy medianing o‘rni tahlil qilinib, global miqyosda sayyohlarning qanchalik ijtimoiy tarmoqlardagi kontentga tayanishi statistik ma’lumotlar orqali yoritilgan. Tadqiqot uchun xorijiy sayyohlardan olingan ma’lumotlar Spearman korrelyatsiyasi, ANOVA va logistik regressiya kabi statistik usullar yordamida tahlil qilindi. Natijalar yosh guruhlari va platforma tanlovi sayohat qarorlariga sezilarli ta’sir ko‘rsatishini, shuningdek, ijobiy onlayn baholar va sharhlar sayyohlik manzillari jozibasini oshirishini ko‘rsatdi. Yosh sayyohlar Instagram va TikTok kabi vizual platformalardan ko‘proq ilhom olsalar, yoshi kattaroq avlod Facebook va an’anaviy manbalarga tayanishi aniqlandi. Ijtimoiy media reytinglari va boshqa foydalanuvchilarning tavsiyalari turistlarning kutgan natijalari shakllanishiga ta’sir etib, ular sayohatdan qoniqish darajasini ham belgilashi mumkin. Xulosa o‘rnida, turizm sohasida ijtimoiy mediadan samarali foydalanish bo‘yicha takliflar berilib, xorijiy tajribalarni O‘zbekistonda qo‘llash yo‘llari ko‘rsatildi.&nbsp;</p> Nigina Xalimova Copyright (c) 2025 Xalimova Nigina Jafarbekovna https://creativecommons.org/licenses/by/4.0 2025-06-17 2025-06-17 3 3 210 216 TIBBIY TASVIRLAR UCHUN TAKOMILLASHGAN MA‘LUMOT UZATISH PROTOKOLI https://dtai.tsue.uz/index.php/dtai/article/view/v3i331 <p>Ushbu maqolada zamonaviy tibbiyotda keng qo‘llaniladigan rentgen, KT, MRT va PET kabi tibbiy tasvirlarni samarali uzatish va saqlash muammolari yoritilgan. Katta hajmdagi tibbiy tasvirlar bilan ishlashda kechikishlar, saqlash resurslarining cheklanganligi hamda xavfsizlik talablari asosiy muammolardan hisoblanadi. Taklif etilgan takomillashgan ma’lumot uzatish protokoli DICOM standarti asosida yaratilgan bo‘lib, u JPEG2000, HEVC-Medical kabi zamonaviy siqish algoritmlari, TLS va AES shifrlash usullari, hamda PACS va AI tizimlari bilan integratsiyalashgan. Protokol orqali uzatish tezligi, siqish samaradorligi va xavfsizlik darajasi oshirilgan. Eksperimental natijalar yangi protokolning an’anaviy usullarga nisbatan samaradorligini tasdiqlaydi.</p> Ulug'bek Bekmurodov Ayimjamal Pirnazarova Nilufar Allamuratova Copyright (c) 2025 Bekmurodov Ulug‘bek Bahrom o‘g‘li, Pirnazarova Ayimjamal Berdibay qizi, Allamuratova Nilufar Kuat qizi https://creativecommons.org/licenses/by/4.0 2025-06-17 2025-06-17 3 3 217 222 MATHEMATICAL AND SOFTWARE METHODS FOR VIRTUALIZING AND SIMULATING COMPLEX ROBOTIC SYSTEMS https://dtai.tsue.uz/index.php/dtai/article/view/v3i332 <p>This article explores the critical shift from physical prototypes to virtual twins in robotics, emphasizing how virtualization—supported by rigorous mathematical models and advanced software—has become essential for overcoming traditional challenges like cost, safety, and development speed. The authors outline key formalisms, including kinematics, dynamics, control theory, and behavioral models, and highlight their practical implementation in modern, web-native software architectures. Emerging technologies like WebAssembly and WebGPU are enabling high-performance, browser-based simulations, democratizing robotics tools for education, prototyping, and remote testing. Case studies demonstrate real-world applications, from beginner programming to industrial robotics collaboration. The article also anticipates future advancements, such as integrating AI and formal methods to enhance simulation realism, train intelligent agents, and ensure system safety. Ultimately, the authors argue that refining virtual modeling techniques will accelerate the development of more capable, reliable robots, further embedding robotics into everyday life.</p> Adizbek Ergashev Sunatullo Hojiyev Munisa Islomova Zilola Primqulova Zarif Qodirov Copyright (c) 2025 Ergashev Adizbek Kamol o‘g‘li, Hojiyev Sunatullo Nasriddin o’g’li, Islomova Munisa Xamza qizi, Primqulova Zilola Avaz qizi, Qodirov Zarif Zafarovich https://creativecommons.org/licenses/by/4.0 2025-06-19 2025-06-19 3 3 223 236 ЎРАМЛИ НЕЙРОН ТАРМОҚЛАР АСОСИДА БУЙРАК ЎСИМТАЛАРИНИ ТАСНИФЛАШ АЛГОРИТМИ https://dtai.tsue.uz/index.php/dtai/article/view/v3i333 <p>Буйрак ўсимталарини аниқлаш тиббий ташхислашнинг мураккаб ва долзарб масалаларидан бири бўлиб, уларни эрта аниқлаш ва тўғри ташхис қўйиш бемор ҳаётини сақлаб қолишда ўта муҳимдир. Буйракдаги ўсимталар кўп ҳолларда клиник белгиларсиз бўлади, бу эса уларни аниқлашни мураккаблаштиради. Одатда буйракдаги патологик ўзгаришлар рентген, компьютер томографияси ва магнит-резонанс томографияси каби тиббий тасвирлаш воситалари ёрдамида аниқланади бироқ, бу шифокорни субъектив бахолашига, юқори даражадаги диққат ва вақт талаб қилишига</p> <p>боғлиқ. Шунинг учун, мазкур масалани самарали ва ишончли ҳал этиш ҳамда шифоркорларга кўмаклашувчи автоматлаштирилган тизимларни ишлаб чиқиш зарур.</p> <p>Тадқиқотда буйрак ўсимталарини аниқлаш учун ўрамли нейрон тармоқларга асосланган моделлар асосида тасвирлардаги патологик ўзгаришлар, ўсимталарни аниқлаш ва уларни хусусиятларини белгилаш каби масалаларни ечиш йўллари келтирилган. Бу шифокорни субъектив аралашувини камайтириш ва тасвирларни тезкор, аниқ таҳлилини амалга оширишда самарали восита бўлиб, тадқиқотнинг мақсади рентген тасвирлари орқали буйрак ўсимталарини аниқлаш учун юқори аниқликка эга нейрон тармоқ моделини ишлаб чиқиш ва у асосида автоматлаштирилган ташхислаш тизимини яратишдан иборат.</p> <p>Тадқиқотда 1016 та позитив ва 1013 та негатив ҳолатларни қамраб олган тиббий тасвирлар тўплами шакллантирилиб, тасвирлар рентген аппарати орқали олинган, буйрак ўсимталари бор ёки йўқлигини аниқлаш учун изоҳланган ва белгиланган. Бунда дастлаб тасвирлар қайта ишлаш босқичларидан ўтказилган, сўнгра улар асосида модел ўқитилган. CNN архитектураси асосида ишлаб чиқилган модел орқали олинган натижаларга кўра 1016 та позитив ҳолатни тўғри аниқлаган ва фақатгина 2 та ҳолатда хато таснифланган. Шунингдек, 1013 та негатив тасвир ҳам тўғри таснифланган, яъни ўсимта мавжуд эмас деган хулоса олинган.</p> <p>Ушбу тадқиқотдаги натижалар, таклиф этилган модел самарадорлиги ва юқори аниқликка эга эканлигини, шунингдек, тиббий тасвирлар таҳлилида самарали ишлашини кўрсатди. Мазкур ишлар тиббий ташхислашда инсон аралашувини камайтириш, ташхис жараёнини тезлаштириш ва самарадорлигини оширишга ёрдам беради. Бунинг натижасида, буйрак ўсимталарини эрта аниқлаш ва даволаш учун янги, самарали ташхислаш тизимини яратиш мумкин бўлади.</p> Нарзулло Маматов Исломжон Жўраев Абдурашид Самижонов Copyright (c) 2025 Маматов Нарзулло Солиджонович, Жўраев Исломжон Абдужалилович, Самижонов Абдурашид Нарзулло ўғли https://creativecommons.org/licenses/by/4.0 2025-06-19 2025-06-19 3 3 237 243 МУЛЬТИМЕДИА ТЕХНОЛОГИЯСИДАН ФОЙДАЛАНИШ СОҲАЛАРИ https://dtai.tsue.uz/index.php/dtai/article/view/v3i334 <p>Мақолада мультимедиа технологиясидан фойдаланиш соҳалари хақида маълумотлар баён этилган. Шу билан биргаликда мультимедиа &nbsp;технологиясининг халқ хўжалигининг соҳалардаги амалий татбиғи ва самараси хақидаги маълумотлар ҳам ёритилгандир.</p> Nodira Begmatova Copyright (c) 2025 Бегматова Нодира Хакимовна https://creativecommons.org/licenses/by/4.0 2025-06-24 2025-06-24 3 3 244 249 ALGORITHM FOR ANALYZING ECONOMIC INDICATORS BASED ON THE SUPPORT VECTOR REGRESSION METHOD OF ARTIFICIAL INTELLIGENCE https://dtai.tsue.uz/index.php/dtai/article/view/v3i335 <p>This study focuses on developing an algorithm for analyzing economic indicators using the Support Vector Regression (SVR) method of artificial intelligence. The advancement of artificial intelligence mechanisms is increasing the ability to forecast economic indicators in various sectors. In this regard, research was conducted to analyze economic indicators using the SVR method. The mathematical formulation of the SVR method and the problem of constructing a decision-making function based on an objective function were solved. Based on mathematical rules, a Support Vector Regression algorithm was developed. The performance of the algorithm was evaluated using RMSE, MAE, and R² metrics.</p> Fayzullo Nazarov Asliddin Sayidqulov Sherzod Yarmatov Copyright (c) 2025 Nazarov Fayzullo Maxmadiyarovich, Sayidqulov Asliddin Xusniddin o'g'li, Yarmatov Sherzod Shokir o'g'li https://creativecommons.org/licenses/by/4.0 2025-06-24 2025-06-24 3 3 250 254 SMART ENERGY MANAGEMENT SYSTEM FOR HIGH-CONSUMPTION HOUSEHOLDS USING RASPBERRY PI AND HYBRID INVERTER https://dtai.tsue.uz/index.php/dtai/article/view/v3i336 <p>This paper introduces the design and implementation of a hardware-based smart energy management system which is designed for high load residential houses with solar panels, battery storage, and hybrid inverter. Using a Raspberry Pi microcomputer the system monitors household consumption and electricity prices in real time, automatically switching from solar battery power in peak periods to grid power when tariffs are lower. The hybrid inverter makes it possible to export excess power to the grid, while also supplying emergency power in the event of grid failure. The system is made up of voltage and current sensors, relay control modules, and a backend service which gathers and retrieves peak hour tariff data. Simulation results confirm that electricity cost can be significantly decreased and the system efficiency can be advanced.</p> Akmaljon Abdumalikov Javokhir Sherbaev Copyright (c) 2025 Abdumalikov Akmaljon Abduxoliq ugli, Sherbaev Javokhir Ravshan ugli https://creativecommons.org/licenses/by/4.0 2025-06-24 2025-06-24 3 3 255 258 MODELS AND ALGORITHMS UTILIZING DEEP LEARNING FOR THE DETECTIONAND ANALYSIS OF EYE DISEASES BASED ON MEDICAL IMAGING https://dtai.tsue.uz/index.php/dtai/article/view/v3i337 <p>This article describes one of the serious consequences of diabetes, the negative impact on the visual system.The purpose of the work is to review the resources devoted to the problem of diagnosing diabetic retinopathy from eye images using neural networks. Materials and methods.The use of modern methods, approaches and algorithms is considered at stages such as data set collection and preparation, data pre-processing, image recognition task, transfer learning, comparison of methods, model ensembles, system development. Possible promising steps in future research are outlined.Results.During the analysis of publications on methods of diagnosing diabetic retinopathy using neural network-based eye images, the following directions for improving the existing results were identified: increasing the image data set, image pre-processing methods, interpretation of the neural network model, computational power implementation algorithms on mobile devices, classification problems and eye lesion segmentation, false negative and false positive diagnoses, model ensembles, using recurrent and capsule neural networks.</p> Shukurjon Kuljanova Otabek Khujayev Copyright (c) 2025 Kuljanova Shukurjon Zaribovna, Khujayev Otabek Kadamboyevich https://creativecommons.org/licenses/by/4.0 2025-06-24 2025-06-24 3 3 259 264