TIBBIY TASVIR TAHLILINING DEEP LEARNING YORDAMIDA RIVOJLANISH TENDENSIYASI
Keywords:
Tibbiy tasvir tahlili, Deep Learning, kompyuter yordamida tashxis qo‘yish, nazoratsiz xususiyatlarni o‘rganishAbstract
Ushbu maqola tibbiy tasvirlarni deep learning (chuqur o‘qitish) algoritmlari yordamida tahlil qilish asoslari va ustunliklari keltirilgan, neyron tarmoqlari va deep learning modellarning hisoblash nazariyalari va ular asosida ma’lumotlarni samarali tahlil qilish usullari tushuntirilgan. Tibbiy tasvirlashda turli ilovalar uchun deep learning modellardan foydalangan holda so‘nggi tadqiqotlar, jumladan, organlarni va to‘qimalarni segmentatsiyalash, obyektlar va hujayralar xususiyatlarini tahlil qilish, kompyuter yordamida tashxis qo‘yish kabi tadqiqotlar tahlil qilingan.
References
Schmidhuber J. 2015. Deep learning in neural networks: an overview. Neural Netw. 61:85–117.
Bengio Y. 2009. Learning Deep Architectures for AI: Foundations and Trends in Machine Learning. Boston: Now. 127 pp.
LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436–44
Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. 2010. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11:3371–408
Zhang W, Li R, Deng H, Wang L, Lin W, et al. 2015. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–24
Robert A. Gonsalves. Jul 7, 2022 Published in Towards Data Science, https://towardsdatascience.com/e-dall-e-creating-digital-art-with-varying-aspect-ratios-5de260f4713d
Roth HR, Lu L, Liu J, Yao J, Seff A, et al. 2016. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans. Med. Imaging 35:1170–81
Shin HC, Roth HR, Gao M, Lu L, Xu Z, et al. 2016. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35:1285–98
Rosenblatt F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958:65–386
Roth HR, Lee CT, Shin HC, Seff A, Kim L, et al. 2015. Anatomy-specific classification of medical images using deep convolutional nets. In Proceedings of the IEEE 12th International Symposium on Biomedical Imaging, pp. 293–303. Washington, DC: IEEE
Yan Z, Zhan Y, Peng Z, Liao S, Shinagawa Y, et al. 2016. Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imaging 35:1332–43
Yue Zhang, Pinyuan Zhong, Dabin Jie, Jiewei Wu, Shanmei Zeng, Jianping Chu, Yilong Liu, Ed X. Wu and Xiaoying Tang. Brain Tumor Segmentation From Multi-Modal MR Images via Ensembling UNets. Front. Radiol., 21 October 2021. Sec. Artificial Intelligence in Radiology
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Xo‘jamqulov Abdulaziz Xazrat o‘g‘li
This work is licensed under a Creative Commons Attribution 4.0 International License.