AVTOTRANSPORTLAR HARAKATINI TARTIBGA SOLISHNING NORAVSHAN MANTIQQA ASOSLANGAN MODELI

Authors

  • Kuchkorov Temurbek Ataxonovich Muhammad al-Xorazmiy nomidagi TATU
  • Hamzayev Jamshid Fayzidin o‘g‘li Muhammad al-Xorazmiy nomidagi TATU
  • Baxritdinov Farrux Zafar o‘g‘li Toshkent Kimyo xalqaro universiteti

Keywords:

aqlli transport tizimlari, svetofor, shahar transporti, noravshan mantiq, Lyapunov teoremasi, tirbandlik

Abstract

Hozirgi vaqtdagi urbanizatsiya va shahar transportida shaxsiy avtomobillardan foydalanishning ko‘payishi tufayli shahar transportining sayohat vaqti tobora uzayib bormoqda. Albatta bunga asosiy sabablardan biri shahar avtomobil yo‘llaridagi tirbandlikni kuzatilishidir. Insonlar ko‘chada ko‘p vaqt o‘tkazadilar va shunga mos ravishda kutishning navbat uzunligi ortadi, bu bir tomondan olib qaraganda yoqilg‘i sarfiga bevosita ta’sir qiladi. Shahar transport tizimida transport oqimining prognozlari va svetoforlar ishlash jadvali alohida o‘rin tutadi. Noravshan mantiqqa asoslangan aqlli boshqaruvchi navbat uzunligiga qarab svetaforlarni boshqarish uchun mo‘ljallangan va natijada tizimning barqarorligi Lyapunov teoremasi yordamida isbotlangan. Tavsiya etilgan usul an’anaviy avtotransport harakatini boshqaruvchilariga va belgilangan vaqtni boshqarishga qaraganda samaraliroqdir.

References

. Zhang, L.; Zhao, Q.; Wang, L.; Zhang, L. Urban intersection signal control based on time-space resource scheduling. IEEE Access 2021, 9, 49281–49291.

. Shahbazi, Z.; Byun, Y.C. A framework of vehicular security and demand service prediction based on data analysis integrated with blockchain approach. Sensors 2021, 21, 3314.

. Shahbazi, Z.; Byun, Y.C. A Procedure for Tracing Supply Chains for Perishable Food Based on Blockchain, Machine Learning and Fuzzy Logic. Electronics 2021, 10, 41.

. Shahbazi, Z.; Byun, Y.C. Integration of Blockchain, IoT and Machine Learning for Multistage Quality Control and Enhancing Security in Smart Manufacturing. Sensors 2021, 21, 1467.

. Shahbazi, Z.; Byun, Y.C. Smart Manufacturing Real-Time Analysis Based on Blockchain and Machine Learning Approaches. Appl. Sci. 2021, 11, 3535.

. Shahbazi, Z.; Byun, Y.C. Blockchain and Machine Learning for Intelligent Multiple Factor-Based Ride-Hailing Services. CMCComput. Mater. Contin. 2022, 70, 4429–4446.

. Jiang, T.; Wang, Z.; Chen, F. Urban Traffic Signals Timing at Four-Phase Signalized Intersection Based on Optimized Two-Stage Fuzzy Control Scheme. Math. Probl. Eng. 2021, 2021.

. Zadeh, L.A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 1973, 28–44.

. Chatterjee, K.; De, A.; Chan, F.T. Real time traffic delay optimization using shadowed type-2 fuzzy rule base. Appl. Soft Comput. 2019, 74, 226–241.

. Pappis, C.P.; Mamdani, E.H. A fuzzy logic controller for a trafc junction. IEEE Trans. Syst. Man Cybern. 1977, 7, 707–717.

. Vogel, A.; Oremovi´c, I.; Šimi´c, R.; Ivanjko, E. Improving traffic light control by means of fuzzy logic. In Proceedings of the 2018 International Symposium ELMAR, Zadar, Croatia, 16–19 September 2018; pp. 51–56.

. Tunc, I.; Yesilyurt, A.Y.; Soylemez, M.T. Different Fuzzy Logic Control Strategies for Traffic Signal Timing Control with State Inputs. IFAC-PapersOnLine 2021, 54, 265–270.

. Geronimo, M.F.; Martinez, E.G.H.; Vazquez, E.D.F.; Godoy, J.J.F.; Anaya, G.F. A multiagent systems with Petri Net approach for simulation of urban traffic networks. Comput. Environ. Urban Syst. 2021, 89, 101662.

. Wu, C.Y.; Hu, M.B.; Jiang, R.; Hao, Q.Y. Effects of road network structure on the performance of urban traffic systems. Phys. A Stat. Mech. Its Appl. 2021, 563, 125361.

. Sirmatel, I.I.; Geroliminis, N. Stabilization of city-scale road traffic networks via macroscopic fundamental diagram-based model predictive perimeter control. Control Eng. Pract. 2021, 109, 104750.

. Jamil, F.; Kim, D. Payment mechanism for electronic charging using blockchain in smart vehicle. Korea 2019, 30, 31.

. Ahmad, S.; Jamil, F.; Khudoyberdiev, A.; Kim, D. Accident risk prediction and avoidance in intelligent semi-autonomous vehicles based on road safety data and driver biological behaviours. J. Intell. Fuzzy Syst. 2020, 38, 4591–4601.

. Ahmad, S.; Jamil, F.; Iqbal, N.; Kim, D. Optimal route recommendation for waste carrier vehicles for efficient waste collection: A step forward towards sustainable cities. IEEE Access 2020, 8, 77875–77887.

. Wang, H.; Hu, P.; Wang, H. A genetic timing scheduling model for urban traffic signal control. Inf. Sci. 2021, 576, 475–483.

. Jovanovi´c, A.; Kuki´c, K.; Stevanovi´c, A. A fuzzy logic simulation model for controlling an oversaturated diverge diamond interchange and ramp metering system. Math. Comput. Simul. 2021, 182, 165–181.

. Kartikasari, R.Y.; Prakarsa, G.; Pradeka, D. Optimization of Traffic Light Control Using Fuzzy Logic Sugeno Method. Int. J. Glob. Oper. Res. 2020, 1, 51–61.

. Zhou, C.; Mo, H.; Chen, X.; Wen, H. Fuzzy Control Under Time-Varying Universe and Phase Optimization in Traffic Lights (ICSSE 2020). Int. J. Fuzzy Syst. 2021, 23, 692–703.

. Yi-Fei, W.; Zheng, G. Research on polling based traffic signal control strategy with fuzzy control. In Proceedings of the 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 7–10 December 2018; pp. 500–504.

. Azimirad, E.; Pariz, N.; Sistani, M.B.N. A novel fuzzy model and control of single intersection at urban traffic network. IEEE Syst. J. 2010, 4, 107–111.

. Park, I.S.; Park, C.e.; Kwon, N.K.; Park, P. Dynamic output-feedback control for singular interval-valued fuzzy systems: Linear matrix inequality approach. Inf. Sci. 2021, 576, 393–406.

. Bernal, E.; Lagunes, M.L.; Castillo, O.; Soria, J.; Valdez, F. Optimization of type-2 fuzzy logic controller design using the GSO and FA algorithms. Int. J. Fuzzy Syst. 2021, 23, 42–57.

. Sadiqa Jafari, Zeinab Shahbazi, Yung-Cheol Byun. Traffic Control Prediction Design Based on Fuzzy Logic and Lyapunov Approaches to Improve the Performance of Road Intersection. Processes 2021, 9, 2205.

. T.A. Kuchkorov, J.F. Hamzayev, T.D. Ochilov. Intellektual transport tizimi ilovalari uchun sunʼiy intellekt texnologiyalaridan foydalanish. Вестник КГУ им. Бердаха. № 2. 2021.

. Усманов, Р. Н., Кучкоров, Т. А., Сеитназаров, К. К. Комплексное исследование и оценка состояния экологически напряжённых территорий в условиях разнородной информации. BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : материалы конференции (2019). БГУИР. 2019.

. Kuanishbay Kenesbaevich Seitnazarov, Rashid Idrisovich Oteniyazov, Timur Atakhanovich Kuchkorov. Integration into the GIS fuzzy-deterministic simulation of hydrogeological objects. Journal of Europaische Fachhochschule (11). ORT Publishing. 2015.

Downloads

Published

2023-10-30

How to Cite

Ataxonovich, T., Hamzayev, J., & Zafar o‘g‘li, F. (2023). AVTOTRANSPORTLAR HARAKATINI TARTIBGA SOLISHNING NORAVSHAN MANTIQQA ASOSLANGAN MODELI. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 1(3), 75–84. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v1i311