TAVSIYA ETISH TIZIMLARINING UMUMIY TAHLILI

Authors

  • Raxmatullayev Marat Alimovich Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti
  • Bekkamov Fayzi Absoatovich Tashkent university of information technologies named after Muhammad al-Khwarizmi
  • Normatov Sherbek Baxtiyorovich Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti

Keywords:

tavsiya etish tizimi, hamkorlik asosida tavsiya etish, kontentga asoslangan tavsiya etish, gibrid usul asosida tavsiya etish, mashinali o‘qitish tizimlari, xotiraga asoslangan tavsiya etish

Abstract

Hozirda bir qancha axborot tizimlarida sun’iy intelektga asoslangan tavsiya etish tizimlari obyektlarni tavsiya etishda samarali qo‘llanilmoqda. Tavsiya etish tizimlari yordamida axborot tizimlarida ham foydalanuvchilarning axborot ehtiyojlarini aniqlash va unga mos manbalarni tavsiya etish orqali yuqori samaradorlilikka erishish mumkin. Buning uchun foydalanuvchilarining yoshi, qiziqishlari, muayyan yo‘nalishdagi bilim darajasi, oldingi so‘rovlari, kasbi va boshqalar haqidagi ma’lumotlarni tahlil etish orqali ularning axborot ehtiyojlari aniqlanishi kerak. Ushbu maqolada tavsiya etish tizimlarining bajaradigan vazifalariga ko‘ra tasniflanishi keltirib o‘tiladi. Shuningdek maqolada tavsiya etish tizimlarining hamkorlik asosida tavsiya, kontent asosida tavsiya etish, gibrid usul asosida tavsiya etish turlari qiyosiy tahlil qilinadi, afzalliklari va kamchiliklari keltirib o‘tiladi. Tavsiya etish tizimlariga qo‘llaniladigan Pirsonning korrelyatsiya usuli, kosinusga asoslangan usullar, klasterlash usullari, neyron tarmoqlar, qarorlar daraxti, regressiyalash usullari, TF/IDF (Term Frequency/Inverse Document Frequency) modellari haqida ma’lumotlar keltiriladi.

References

. Jyoti Shokeen, Chhavi Rana, A study on features of social recommender systems. © Springer Nature B.V. 2019

. Madadipouya K., Chelliah S., A Literature Review on Recommender

Systems Algorithms, Techniques and Evaluations. BRAIN: Broad Research in

Artificial Intelligence and Neuroscience, ročník 8, č. 2, July 2017.

. Rustamov A, Bekkamov F, Recommender systems: an overview, Scientific

reports of Bukhara State University, 2021/3(85).

. Marat Rakhmatullaev, Sherbek Normatov, Fayzi Bekkamov, Fuzzy model for determining the information needs of library users, Environment. Technology. Resources. 14th international scientific and practical conference. June 15-16, 2023, Rezekne Academy Of Technologies, Rezekne, Latvia

Aggarwal, Charu C., Recommender systems. The Textbook, © Springer International Publishing Switzerland 2016

Elahi, Mehdi; Ricci, Francesco; Rubens, Neil. A survey of active learning in collaborative filtering recommender systems. Computer Science Review – via Elsevier 2016

Koren, Yehuda; Bell, Robert; Volinsky, Chris. Matrix Factorization Techniques for Recommender Systems. Computer. 42 (8): 30 – 37. CiteSeerX 10.1.1.147.8295. doi:10.1109/MC.2009.263. 2009

Zafar Ali, Guilin Qi, Pavlos Kefalas, Waheed Ahmad Abro, Bahadar Ali, A graph based taxonomy of citation recommendation models. © Springer Nature B.V. 2020

Ya Chen, Samuel Mensah, Fei Ma, Hao Wang, Zhongan Jiang, Collaborative filtering grounded on knowledge graphs. Pattern Recognition Letters (PTRL), Volume 151, Issue CNov 2021, pp 55–61https://doi.org/10.1016/j.patrec.2021.07.022

F.O. Isinkaye, Y.O. Folajimi, B.A. Ojokoh, Recommendation systems: Princeples, methods and evaluation, Egyptian Informatics Journal 2015

Sewar Khalifeh, Amjed A. Al-Mousa, A Book Recommender System Using Collaborative Filtering Method. DATA 21: International Conference on Data Science, E-learning and Information Systems 2021April 2021, pp 131–135https://doi.org/10.1145/3460620.3460744

Mohammadsadegh Vahidi Farashah, Akbar Etebarian, Reza Azmi, Reza Ebrahimzadeh Dastjerdi, A hybrid recommender system based on link prediction for movie baskets analysis. Journal of Big Data. 2021 https://doi.org/10.1186/s40537-021-00422-0

Venugopal Boppana, P. Sandhya, Web crawling based context aware recommender system using optimized deep recurrent neural network. Journal of Big Data. 2021. https://doi.org/10.1186/s40537-021-00534-7

Michelle Deschênes, Recommender systems to support learners’ Agency in a Learning Context: a systematic review. International Journal of Educational Technology in Higher Education. 2020. https://doi.org/10.1186/s41239-020-00219-w

Downloads

Published

2023-12-16

How to Cite

Raxmatullayev, M., Bekkamov, F., & Normatov, S. (2023). TAVSIYA ETISH TIZIMLARINING UMUMIY TAHLILI. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 1(4), 101–108. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v1i414