TASVIRDAN OB’YEKTLARNI ANIQLASHNING KLASSIK METODLARI

Authors

  • Fayziyev Muhriddin Bahriddin o‘g‘li Buxoro davlat universiteti

Keywords:

ob’yektni aniqlash, Haar, HOG, SIFT, algoritm

Abstract

Ob'yektlarni aniqlash kompyuter koʻrish sohasining asosiy vazifalaridan biri boʻlib, tasvirlardan insonlar, yuzlar, transport vositalari, hayvonlar kabi maʼlum ob'yektlarni topish va ularni lokalizatsiya qilishdan iborat. Neyron tarmoq texnologiyalarining paydo boʻlishidan oldin bu vazifa klassik algoritmlar yordamida hal qilingan. Ushbu maqolada ob'yektlarni aniqlashning eng mashhur klassik metodlari (Haar Cascade, HOG, SIFT) va ularning ishlash tamoyillari koʻrib chiqiladi.

References

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Forsyth, D. A., & Ponce, J. (2002). Computer Vision: A Modern Approach. Prentice Hall.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (IJCV), 60(2).

Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: Speeded Up Robust Features. European Conference on Computer Vision (ECCV).

Lewis, J. P. (1995). Fast template matching. Vision Interface, 95.

Felzenszwalb, P. F., et al. (2008). A discriminatively trained, multiscale, deformable part model. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Felzenszwalb, P. F., et al. (2010). Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553).

Zhao, Z. Q., et al. (2019). Object Detection with Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems.

Brown, M., & Lowe, D. G. (2002). Invariant features from interest point groups. British Machine Vision Conference (BMVC).

Shapiro, L. G., & Stockman, G. C. (2001). Computer Vision. Prentice Hall.

Downloads

Published

2023-12-28

How to Cite

Fayziyev , M. (2023). TASVIRDAN OB’YEKTLARNI ANIQLASHNING KLASSIK METODLARI. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 1(4), 171–175. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v1i425

Most read articles by the same author(s)