TAQSIMLASH MEXANIZMLARI ASOSIDA MA’LUMOTLARNI OPTIMAL SAQLASH UCHUN MASHINAVIY O’QITISH ALGORITMLARINI QO’LLASH

Authors

  • Axatov Akmal Rustamovich Samarkand state university
  • Nazarov Fayzullo Maxmadiyarovich Samarkand state university
  • Rashidov Akbar Ergash o'g'li Samarkand state university

Keywords:

Taqsimlangan usullar, katta ma’lumotlar, ma’lumotlarning saqlashni optimallashtirish, mashinaviy o’qitish, ko‘p o‘zgaruvchili chiziqli regressiya, poliynomial regressiya

Abstract

Hozirda raqamli texnologiyalar va sun’iy intellekt mexanizmlari barcha sohalarga ta’lim, ijtimoiy-iqtisodiy, boshqaruv va ishlab chiqarish sohalarida keng joriy qilinmoqda. Internet tarmog’i orqali ma’lumotlar almashinuvi va ma’lumotlarni sifatli qayta ishlash bugungi kunda keskin darajada oshib bormoqda. Buning natijasida ma’lumotlarning hajmi keskin oshishi vujudga kelishiga sabab bo‘lmoqda. Ushbu katta ma’lumotlarni noan’anaviy usullar va tizimlar yordamida sifatli tez qayta ishlash masalasi dolzarb tadqiqot mavzularidan biriga aylanmoqda. Mazkur tadqiqot ishida internet tarmog’ida ishlaydigan ishida axborot tizimlarida ma’lumotlarni tezkor qayta ishlash va optimal saqlash uchun ma’lumotlar bazasidagi jadvallarni taqsimlashda mashinaviy o’qitish usullarini qo’llash masalasi yechilgan. Mashinaviy o’qitishning ko‘p o‘zgaruvchili chiziqli regressiya, Poliynomial regressiya algoritmlaridan foydalanish samaradorligi tahlil qilingan. Natijada mashinaviy o’qitish asosida ma’lumotlar bazasidagi jadvallarni taqsimlashning samaradorligi oshirilgan.

References

A. R. Akhatov, F. M. Nazarov and A. Rashidov, "Mechanisms of Information Reliability in BigData and Blockchain Technologies," 2021 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2021, pp. 1-4, doi: 10.1109/ICISCT52966.2021.9670052.

D. Reinsel, J. Gantz, and J. Rydning “The Digitization of the World from Edge to Core”, International Data Corporation, November 2018.

A. R. Akhatov, F. M. Nazarov and A. Rashidov, "Increasing Data Reliability By Using Bigdata Parallelization Mechanisms," 2021 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2021, pp. 1-4, doi: 10.1109/ICISCT52966.2021.9670387.

N. F. Makhmadiyarovich and Y. Sherzodjon, “Development of algorithms for predictive evaluation of investment projects based on machine learning,” Artificial Intelligence, Blockchain, Computing and Security Volume 2. eBook ISBN: 9781032684994, pages 681 – 685, January 2023.

A. Gandomi, M. Haider “Beyond the hype: Big data concepts, methods, and analytics”, International Journal of Information Management 35 (2015) 137-144

A. Akhatov, M. Sabharwal, F. Nazarov, and A. Rashidov “Application of cryptographic methods to blockchain technology to increase data reliability” 2nd International Conference on Advance Compu-ting and Innovative Technologies in Engineering (ICACITE 2022) DOI: 10.1109/ICACITE53722.2022.9823674

Kunanets N., Vasiuta O. & Boiko N. 2019. “Advanced Technologies of Big Data Research in Distributed Information Systems” International Scientific and Technical Conference on Computer Sciences and Information Technologies, September 2019, 71 – 76 p., doi: 10.1109/STC-CSIT.2019.8929756

A.Rashidov, A.R. Akhatov, and F.M. Nazarov, “Real-Time Big Data Processing Based on a Distributed Computing Mechanism in a Single Server”. In Stochastic Processes and Their Applications in Artificial Intelligence (pp. 121-138). IGI Global. https://doi.org/10.4018/978-1-6684-7679-6.ch009

A. Akhatov, A. Rashidov, and A. Renavikar, “Optimization of the database structure based on Machine Learning algorithms in case of increased data flow”, Artificial Intelligence. Blockchain. Computing and Security Volume 2, CRC Press, 2023, pp. 675-680.

A.Rashidov, A.Akhatov, and F. Nazarov, “The Same Size Distribution of Data Based on Unsupervised Clustering Algorithms”, In Advances in Artificial Systems for Logistics Engineering III. ICAILE 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 180. Springer, Cham, https://doi.org/10.1007/978-3- 031-36115-9_40

Axatov A.R., Rashidov A.E., Nazarov F.M., Renavikar A. “Optimization of the number of databases in the Big Data processing” Проблемы информатики, № 1(58), 2023, DOI: 10.24412/2073-0667-2023-1-33-47

A. Rashidov, A. Akhatov, I. Aminov, and D. Mardonov, “Distribution of data flows in distributed systems using hierarchical clustering,” International conference on Artificial Intelligence and Information Technologies (ICAIIT 2023), Uzbekistan, Samarkand, 2023

N. F. Makhmadiyarovich and Y. Sherzodjon, “Methods of increasing data reliability based on distributed and parallel technologies based on blockchain,” Artificial Intelligence, Blockchain, Computing and Security Volume 2. eBook ISBN: 9781032684994, pages 637 – 642, January 2023.

S. Yarmatov and F. M. Nazarov, "Optimization of Prediction Results Based on Ensemble Methods of Machine Learning," 2023 International Russian Smart Industry Conference (SmartIndustryCon), Sochi, Russian Federation, 2023, pp. 181-185, doi: 10.1109/SmartIndustryCon57312.2023.10110726.

Misaki M., Tsuda T., Inoue S., Sato S., Kayahara A. "Distributed database and application architecture for big data solutions," 2016 International Symposium on Semiconductor Manufacturing (ISSM), Tokyo, Japan, 2016, pp. 1-4, doi: 10.1109/ISSM.2016.7934509.

Published

2024-08-28

How to Cite

Axatov , A., Nazarov, F., & Rashidov , A. (2024). TAQSIMLASH MEXANIZMLARI ASOSIDA MA’LUMOTLARNI OPTIMAL SAQLASH UCHUN MASHINAVIY O’QITISH ALGORITMLARINI QO’LLASH. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 2(4), 8–14. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v2i42