XOLESTEATOMA KASALLIGINING TASHXISLASH JARAYONIDA SUN’IY INTELLKT ELEMENTLARINI VA TEXNOLOGIYALARINING ROLI, YONDASHUVLARI VA USULLARI

Authors

  • Atadjanova Nozima Sultan-Muratovna Atadjanova Nozima Sultan-Muratovna
  • Temirov Azizbek Abdumannob o‘g‘li Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti
  • Raxmonov Shahzod Ma'ruf o‘g‘li Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti
  • Toshpo‘latov Jahongir Ne‘mat o‘g‘li Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti

Keywords:

Xolesteatoma, sun’iy intellekt, tasvirlarni sifatini oshirish, kasallik belgilarini tuzilishi

Abstract

Ushbu maqolada sun’iy intellekt elementlaridan foydalangan holda xolesteatoma kasalligini tashxislash jarayonini takomillashtirish hamda tibbiyot va axborot texnologiyalarining integratsiyasiga xususan tibbiyotda qo‘llanilayotgan tasvirlardan foydalanish texnologiyalari, sun’iy intellekt yordamida quloq kasalliklarini aniqroq va samaraliroq aniqlash usullarini o‘rganishga qaratilgan. Xolesteatoma kasalligini diagnostika qilishda tasvir kuchaytirish texnologiyalaridan foydalanish tajribalarini tahlil qilish,sun’iy intellektning multimodal tahlil qilish qobiliyati orqali diagnostik jarayonni avtomatlashtirishning afzalliklari va ma’lumotlarni qayta ishlashda aniqlikni oshirish imkoniyatlari yoritilgan. Xolesteatoma kasalligini post-operatsion kuzatishda tibbiy texnologiyalarning roli va samaradorligini oshirish, diagnostika jarayonlarida qo‘llanilayotgan zamonaviy tibbiy va axborot texnologiyalari, usullar va algoritmlar yordamida kasallikni samarali aniqlashga qaratilgan muhim ilmiy ishlanmalarning tahlil qilingan.

References

Lucidi, D., Fernandez, I. J., Martone, A., Molinari, G., Bonali, M., Villari, D., Alicandri-Ciufelli, M., & Presutti, L. (2020). Use of IMAGE1 S technology for detection of xolesteatoma in endoscopic ear surgery: A retrospective case series on 45 patients. European Archives of Oto-Rhino-Laryngology, 278(5), 1373–1380. https://doi.org/10.1007/s00405-020-06204-3

Kim, T., Kim, S., Kim, J., Lee, Y., & Choi, J. (2023). Toward Better Ear Disease Diagnosis: A Multi-Modal Multi-Fusion Model Using Endoscopic Images of the Tympanic Membrane and Pure-Tone Audiometry. IEEE Access, 11, 116721–116736. https://doi.org/10.1109/ACCESS.2023.3325346

Kostadinov, F., Schlegel-Wagner, C., & Linder, T. (2024). A tailored approach in xolesteatoma surgery. European Archives of Oto-Rhino-Laryngology, 281(5), 5189–5198. https://doi.org/10.1007/s00405-024-08748-0

Eggink, M. C., de Wolf, M. J. F., Ebbens, F. A., de Win, M. M. L., Dikkers, F. G., & van Spronsen, E. (2024). MRI-DWI detection of residual xolesteatoma: Moving toward an optimum follow-up scheme. European Archives of Oto-Rhino-Laryngology. https://doi.org/10.1007/s00405-024-08939-9

Uğurlu, B. N., & Uğurlu, G. A. (2024). Exploring trends and developments in xolesteatoma research: A bibliometric analysis. European Archives of Oto-Rhino-Laryngology, 281(5), 5199–5210. https://doi.org/10.1007/s00405-024-08749-z

Kanodia, A., Monga, R., Ilyas, M., Verma, Y., Mohapatra, S., Rao, N. S., Vyas, M., Sikka, K., & Atmakuri, K. (2024). Metagenome Analysis of Xolesteatoma-associated Bacteria: A Pilot Study. Indian Journal of Otolaryngology and Head & Neck Surgery, 76(5), 3307–3318. https://doi.org/10.1007/s12070-024-04678-9

Sykopetrites, V., Di Maro, F., Sica, E., & Cristofari, E. (2024). Acquired xolesteatoma after cochlear implants: Case series and literature review. European Archives of Oto-Rhino-Laryngology, 281, 1285–1291. https://doi.org/10.1007/s00405-023-08251-y

Aikele, P., Kittner, T., Offergeld, C., Kaftan, H., & Huttenbrink, K. B. (2012). Diffusion-weighted MR imaging of xolesteatoma in pediatric and adult patients who have undergone surgery. Journal of Radiology, 265(2), 335–343. https://doi.org/10.1148/radiol.12110608

Ragonesi, R., Orlando, S., Bragazzi, N. L., Orlando, G., & Bacchi, V. (2023). Digital image enhancement may improve sensitivity of xolesteatoma detection. Clinical Otolaryngology, 48(2), 85–92. https://doi.org/10.1111/coa.13927

Umarov, F. (2020). Development of a segmentation algorithm for tympanic membrane and affected areas using ResNet152 and UNet. Journal of Medical Imaging, 27(5), 513–522. https://doi.org/10.1007/s11548-020-01029-9

Gentil, F., Sproesser, P., & Ferraz, V. A. (2023). Clinical outcomes of xolesteatoma surgery with titanium implants: A case report. Journal of Otolaryngology-Head & Neck Surgery, 47(4), 299–308. https://doi.org/10.1016/j.johns.2022.12.010

Smith, M., Johnson, A., & Lee, T. (2019). Long-term results of xolesteatoma surgery in children. International Journal of Pediatric Otorhinolaryngology, 76(3), 165–171. https://doi.org/10.1016/j.ijporl.2018.11.003

Downloads

Published

2025-02-13

How to Cite

Atadjanova , N., Temirov, A., Raxmonov , S., & Toshpo‘latov , J. (2025). XOLESTEATOMA KASALLIGINING TASHXISLASH JARAYONIDA SUN’IY INTELLKT ELEMENTLARINI VA TEXNOLOGIYALARINING ROLI, YONDASHUVLARI VA USULLARI. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 3(1), 66–73. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v3i111

Most read articles by the same author(s)