TA’LIM JARAYONIDA SUN’IY INTELLEKT TEXNOLOGIYALARIDAN FOYDALANISH USULLARI VA ALGORITMLARI

Authors

  • Nasimov Rahsid Hamid o‘g‘li Toshkent davlat iqtisodiyot universiteti
  • Mo‘minova Munira Nosir qizi Toshkent davlat iqtisodiyot universiteti

Keywords:

sun’iy Intellekt (SI), mashinali o‘qitish (ML), ta’lim jarayoni, avtomatlashtirish individual o‘qitish, talabalar bilimini baholash, o‘quv tanlanmalar, algoritmlar, tizimni optimallashtirish, o‘qitish metodologiyalari

Abstract

Ushbu maqolada ta’lim jarayonida sun’iy intellekt vositalaridan foydalanish va algoritmlari haqida qisqacha tahlil qilindi. Shuningdek, mashinali o‘qitshdan foydalangan holda talabalar bilimini baholash yondashuvlari o‘rganib chiqildi, talabalar faoliyatini baholash jarayonining mashinali o‘qitishning hamda talabani individual o‘qitishning blok sxemalari taklif etildi. Taklif etilayotgan ishda mutaxassislar ishtiroki va iteratsion takomillashtirish jarayoni orqali savol-javob muntazam ravishda yangilanadi hamda sifatli baholash uchun optimallashtiriladi.

References

L. Chen, P. Chen and Z. Lin, "Artificial Intelligence in Education: A Review," in IEEE Access, vol. 8, pp. 75264-75278, 2020, doi: 10.1109/ACCESS.2020.2988510

Almasri, F. Exploring the Impact of Artificial Intelligence in Teaching and Learning of Science: A Systematic Review of Empirical Research. Res Sci Educ 54, 977–997 (2024). https://doi.org/10.1007/s11165-024-10176-3

Ramadan, Ahmed, Husam Yasin and Burhan Pektaş. “The Role of Artificial Intelligence and Machine Learning in Software Testing.” ArXiv abs/2409.02693 (2024): n. pag.

Vedpal and N. Chauhan, "Role of Machine Learning in Software Testing," 2021 5th International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, 2021, pp. 1-5, doi: 10.1109/ISCON52037.2021.9702427.

M. Islam, F. Khan, S. Alam and M. Hasan, "Artificial Intelligence in Software Testing: A Systematic Review," TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON), Chiang Mai, Thailand, 2023, pp. 524-529, doi: 10.1109/TENCON58879.2023.10322349.

Arévalo-Cordovilla, F.E.; Peña, M. Comparative Analysis of Machine Learning Models for Predicting Student Success in Online Programming Courses: A Study Based on LMS Data and External Factors. Mathematics 2024, 12, 3272. https://doi.org/10.3390/math12203272

A. Garg, U. K. Lilhore, P. Ghosh, D. Prasad and S. Simaiya, "Machine Learning-based Model for Prediction of Student’s Performance in Higher Education," 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2021, pp. 162-168, doi: 10.1109/SPIN52536.2021.9565999.

Sayed, W.S., Noeman, A.M., Abdellatif, A. et al. AI-based adaptive personalized content presentation and exercises navigation for an effective and engaging E-learning platform. Multimed Tools Appl 82, 3303–3333 (2023). https://doi.org/10.1007/s11042-022-13076-8

Downloads

Published

2025-02-28

How to Cite

Nasimov , R., & Mo‘minova , M. (2025). TA’LIM JARAYONIDA SUN’IY INTELLEKT TEXNOLOGIYALARIDAN FOYDALANISH USULLARI VA ALGORITMLARI. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 3(1), 257–263. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v3i139