MATHEMATICAL AND SOFTWARE METHODS FOR VIRTUALIZING AND SIMULATING COMPLEX ROBOTIC SYSTEMS

Authors

  • Ergashev Adizbek Kamol o‘g‘li Tashkent University of Information Technologies
  • Hojiyev Sunatullo Nasriddin o’g’li Tashkent University of Information Technologies
  • Islomova Munisa Xamza qizi Tashkent University of Information Technologies
  • Primqulova Zilola Avaz qizi Tashkent University of Information Technologies
  • Qodirov Zarif Zafarovich Tashkent University of Information Technologies

Keywords:

robotics simulation, virtual twins, mathematical modeling, web-native tools, AI integration, future of robotics development

Abstract

This article explores the critical shift from physical prototypes to virtual twins in robotics, emphasizing how virtualization—supported by rigorous mathematical models and advanced software—has become essential for overcoming traditional challenges like cost, safety, and development speed. The authors outline key formalisms, including kinematics, dynamics, control theory, and behavioral models, and highlight their practical implementation in modern, web-native software architectures. Emerging technologies like WebAssembly and WebGPU are enabling high-performance, browser-based simulations, democratizing robotics tools for education, prototyping, and remote testing. Case studies demonstrate real-world applications, from beginner programming to industrial robotics collaboration. The article also anticipates future advancements, such as integrating AI and formal methods to enhance simulation realism, train intelligent agents, and ensure system safety. Ultimately, the authors argue that refining virtual modeling techniques will accelerate the development of more capable, reliable robots, further embedding robotics into everyday life.

References

Zhang Y., Li K. WEB-BASED SIMULATION AND MOTION PLANNING FOR HUMAN–ROBOT COLLABORATION // International Journal of Computer Integrated Manufacturing. – 2024. – Т. 37. – №. 2. – С. 177–199. (tandfonline.com)

Chen H., Garcia J. SIMULATION-BASED DIGITAL TWIN FOR HUMAN–ROBOT ASSEMBLY OPTIMIZATION // Robotics and Computer-Integrated Manufacturing. – 2024. – Т. 86. – №. 7. – С. 105-118. (sciencedirect.com)

Smith D., Patel R. FORMAL VERIFICATION OF ROBOTIC CONTACT TASKS VIA REACHABILITY ANALYSIS // IFAC-PapersOnLine. – 2023. – Т. 56. – №. 27. – С. 79-86. (sciencedirect.com)

Gorchakov N., Kozlov A. BROWSER-BASED SIMULATION FOR NOVICE-FRIENDLY CLASSROOM ROBOTICS // Frontiers in Computer Science. – 2022. – Т. 4. – №. 1031572. – С. 1-13. (frontiersin.org)

Nguyen T., Chong N. ENHANCING SOCIAL ROBOT NAVIGATION WITH INTEGRATED MOTION PREDICTION AND TRAJECTORY PLANNING IN DYNAMIC HUMAN ENVIRONMENTS // IEEE Robotics and Automation Letters. – 2024. – Т. 9. – №. 4. – С. 6500-6507. (arxiv.org)

Oelerich T., Kugi A. MODEL PREDICTIVE TRAJECTORY PLANNING FOR HUMAN-ROBOT HANDOVERS // Robotics and Autonomous Systems. – 2024. – Т. 173. – №. 3. – С. 104655. (arxiv.org)

Jafari M., Kamruzzaman J. HARDWARE-BASED WEBASSEMBLY ACCELERATOR FOR EMBEDDED SYSTEMS // Electronics. – 2024. – Т. 13. – №. 20. – С. 3979. (mdpi.com)

Guan Z., Liu L. EMPOWERING WEBASSEMBLY WITH THIN KERNEL INTERFACES // ACM Transactions on Computer Systems. – 2025. – Т. 43. – №. 2. – С. 1-31. (dl.acm.org)

Hollenstein P., Gloor M. WARDUINO: AN EMBEDDED WEBASSEMBLY VIRTUAL MACHINE FOR IOT DEVICES // Microprocessors and Microsystems. – 2024. – Т. 94. – №. 1. – С. 104630. (sciencedirect.com)

Yermakov P., Sidorov A. TOWARDS A DIGITAL TWIN OF A ROBOT WORKCELL: STANDARDS AND METHODS // NIST Journal of Research. – 2024. – Т. 129. – №. 4. – С. 1-14. (nist.gov)

Lee S., Park J. EQUIPMENT-LEVEL DIGITAL TWIN METHOD FOR INDUSTRIAL ROBOTS // International Journal of Production Research. – 2024. – Т. 62. – №. 14. – С. 4240-4257. (tandfonline.com)

Brown D., Clark E. WEB-BASED HUMAN-ROBOT COLLABORATION DIGITAL TWIN MANAGEMENT SYSTEM // Computers in Industry. – 2024. – Т. 154. – №. 6. – С. 104592. (sciencedirect.com)

Attala Z., Foster S. PROCESS-ALGEBRAIC SEMANTICS FOR VERIFYING INTELLIGENT ROBOTIC CONTROL SOFTWARE // Lecture Notes in Computer Science. – 2025. – Т. 14200. – №. 1. – С. 85-101. (shemesh.larc.nasa.gov)

Foster K., Adams R. SIMULATION-BASED TESTING OF HYBRID CONTROL FOR AUTONOMOUS SYSTEMS // Control Engineering Practice. – 2025. – Т. 139. – №. 2. – С. 108976. (numberanalytics.com)

Hernandez J., Dixon C. EMERGING TRENDS IN REALISTIC ROBOTIC SIMULATIONS: A SYSTEMATIC REVIEW // International Journal of Advanced Robotic Systems. – 2023. – Т. 20. – №. 4. – С. 1-30. (researchonline.rca.ac.uk)

Akhmedov B., Rakhimov D. ONLINE MICROCONTROLLER EMULATION FOR STEM EDUCATION USING WEB TECHNOLOGIES // Universum: технические науки. – 2023. – Т. 4. – №. 1 (115). – С. 45-51.

Sultanov K., Karimova N. HYBRID SIM-TO-REAL PIPELINE FOR COLLABORATIVE ROBOT TRAINING // Uzbek Journal of Information Technologies. – 2025. – Т. 3. – №. 2. – С. 60-70.

Müller R., Schmidt T. FORMAL MODEL CHECKING OF DIGITAL TWIN SAFETY PROPERTIES IN SURGICAL ROBOTICS // Medical Robotics and Computer-Assisted Surgery. – 2025. – Т. 11. – №. 1. – С. 33-42.

Bahodir M., Elyor E. IMAGE DATA CLUSTERING BASED ON THE VGG16 MODEL AND THE K-MEANS ALGORITHM //Universum: технические науки. – 2025. – Т. 6. – №. 1 (130). – С. 23-30.

Downloads

Published

2025-06-19

How to Cite

Ergashev , A., Hojiyev , S., Islomova , M., Primqulova , Z., & Qodirov , Z. (2025). MATHEMATICAL AND SOFTWARE METHODS FOR VIRTUALIZING AND SIMULATING COMPLEX ROBOTIC SYSTEMS. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 3(3), 223–236. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v3i332

Most read articles by the same author(s)