BOZORNING DORI VOSITALARIGA BO’LGAN EHTIYOJLARINI BASHORATLASHDA SUN’IY INTЕLLЕKT TЕXNOLOGIYALARINI QO’LLASH

Authors

  • Muhamediyeva Dilnoz Tulkunovna TIIAME National Research University
  • Pulatov G’iyos Gofurjonovich TIIAME National Research University

Keywords:

daromad, dori vositalari, ehtiyoj, maqsad funksiya, noravshan to’plam, optimal prognozlash, sun’iy intellekt, talab.

Abstract

Korxonalar resurslarini to’g’ri boshqarish, ishlab chiqarish va marketingni malakali boshqarish mamlakatimiz farmatsevtika sanoatini modernizatsiya qilish va farmatsevtika bozorini mamlakatimizda ishlab chiqarilgan dori vositalari bilan zabt etishga katta hissa qo’shishi mumkin. Farmatsevtika mahsulotlarini ishlab chiqaruvchi korxonalar uchun farmatsevtika mahsulotlarini ishlab chiqarish va sotishni rejalashtirish muhim o’rin tutadi. Sotishni tegishli rejalashtirishsiz korxonalarning samarali rivojlanishiga to’sqinlik qiladi. Korxona faoliyatida sotishni rejalashtirish muhim ahamiyatga ega. Qoida tariqasida, sotish moliyaviy daromadning asosiy manbai hisoblanadi. Savdoni rejalashtirish samarasini maksimal darajada oshirish uchun tuzilgan reja real bo’lishi va korxona resurslariga mos kelishi kerak. Ushbu ishda farmatsevtika mahsulotlarini ishlab chiqarish va sotishni optimal prognozlashdada sun’iy intellekt usullari o’rganildi.

References

Artificial intelligence: next frontier for connected pharma. Scalable Health. June 2017. https://www.scalablehealth.com/ai

Thomas Sullivan. A Tough Road: Cost To Develop One New Drug Is $2.6 Billion; Approval Rate for Drugs Entering Clinical Development is Less Than 12%. policymed.com/2014/12/a-tough-road-cost-to-develop-one-new-drug-is-26-billion-approval-rate-for-drugs-entering-clinical-de.html Mar 21, 2019

Wang RC, Liang TF (2004) Application of fuzzy multi-objective linear programming to aggregate production planning. Comput Ind Eng 46:17–41.

Reynolds R. G., Chung Ch.-J. Knowledge-Based Self-Adap¬tation in Evolutionary Search // International Journal of Pattern Recognition and Artificial Intelligence. 2000. Vol 14, pp. 19-33.

Aggarwal S., Gupta C., Algorithm for SolvingIntuitionistic Fuzzy Transportation Problem with Generalized Trapezoidal Intuitionistic Fuzzy Numbervia New Ranking Method, Available from:export.arxiv.org, 01/2014; Source: arXiv, (2014).

Antony R. J. P., Savarimuthu. S.J, Pathinathan T.,Method for Solving the Transportation ProblemUsingTriangular Intuitionistic Fuzzy Number,International Journal of Computing Algorithm,Volume: 03, February 2014, (2014)Pages: 590-605,.

Gani A.N., Abbas S., A new method for solvingintuitionistic fuzzy transportation problem AppliedMathematical Sciences, Vol. 7, 2013, no. 28, (2013)1357 – 1365.

Hussain R.J., Kumar P.S., Algorithmic approach forsolving intuitionistic fuzzy transportation problemApplied Mathematical Sciences, Vol. 6, 2012, no. 80,(2012)3981 – 3989.

KaurDalbinder, Mukherjee Sathi, BasuKajlaMultiobjectivemulti-index real life transportation problemwith interval valued parameters, Proceedings of theNational Seminar on Recent Advances in Mathematicsandits Applications in Engineering Sciences(RAMAES 2012), March 16-17, 2012, Bengal Collegeof Engineeringand Technology, Durgapur, Page 29-36, ISBN 978-93-5067-395-9, (2012).

Muhamediyeva D.T. and Egamberdiyev N.A. Algorithm and the Program of Construction of the Fuzzy Logical Model //2019 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2019, pp. 1-4.

Muhamediyeva D.T., Egamberdiyev N., Bozorov A. Forecasting risk of non-reduction of harvest //Proceedings of the 2nd International Scientific and Practical Conference “Scientific community: Interdisciplinary research”. - Hamburg, Germany. 26-28.01.2021.

Sotvoldiev D., Muhamediyeva D.T., Juraev Z. Deep learning neural networks in fuzzy modeling // IOP Conf. Series:Journal of Physics: Conference Series 1441 (2020) 012171. DOI: https://doi.org/10.1088/1742-6596/1441/1/012171

Downloads

Published

2023-08-28

How to Cite

Muhamediyeva, D., & Pulatov, G. (2023). BOZORNING DORI VOSITALARIGA BO’LGAN EHTIYOJLARINI BASHORATLASHDA SUN’IY INTЕLLЕKT TЕXNOLOGIYALARINI QO’LLASH. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 1(2), 7–11. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v1i22

Most read articles by the same author(s)