XAOTIK AKSLANTIRISHLARGA ASOSLANGAN S JADVALLARNI HOSIL QILISH ALGORITMI

Authors

  • Xudoykulov Zarifjon Turakulovich Toshkent axborot texnologiyalari universiteti

Keywords:

xaotik akslantirish, S jadval, umumiy kriptografik talablar, bifrukatsiya diagrammasi, Lyapunov kо‘rsatkichi (LE), hisoblash imkoniyati cheklangan blokli shifrlash algoritmlari (Lightweight block ciphers)

Abstract

Mazkur maqolada sinus va tent xaotik akslantirishlaridan birgalikda foydalanish orqali hosil qilingan akslantirish yordamida S jadvallarni hosil qilish algoritmi taklif etilgan. Hosil qilingan xaotik akslantirishning bifrukatsiya diagrammasi va LE kо‘rsatkichi bо‘yicha tahlil natijasi uni kriptografik akslantirishlarni hosil qilishda yetarligini kо‘rsatdi. Taklif etilgan algoritm asosida 4, 5 va 8 bitli S jadvallar hosil qilinib, umumiy kriptografik talablarga baholandi. Baholash natijalari hosil qilingan S jadvallarni amaldagi mavjudlaridan qolishmasligini va ulardan amaldagi kriptografik shifrlash algoritmlarida foydalanish mumkinligini kо‘rsatdi.

References

Claude E. Shannon, “A Mathematical Theory of Cryptography”, Bell System Technical Memo MM 45-110-02, September 1, 1945.

Kuryazov D.M., Sattarov A.B., Axmedov B.B. Blokli simmetrik shifrlash algoritmlari bardoshliligini zamonaviy kriptotahlil usullari bilan baholash. О‘quv qо‘llanma. Toshkent. 2017, 224 bet.

Prouff, E.: DPA attacks and S-Boxes. In: International Workshop on Fast Software Encryption. pp. 424–441. Springer (2005).

Li H, Zhou Y, Ming J, Yang G, Jin C (2020) The notion of transparency order, revisited. Comput J 63(12):1915–1938. https://doi.org/10.1093/comjnl/bxaa069

de la Cruz Jiménez R. A. On some methods for constructing almost optimal s-boxes and their resilience against side-channel attacks //Cryptology ePrint Archive. – 2018.

Fei Y., Luo Q., Ding A. A. A statistical model for DPA with novel algorithmic confusion analysis //Cryptographic Hardware and Embedded Systems–CHES 2012: 14th International Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings 14. – Springer Berlin Heidelberg, 2012. – S. 233-250.

P. -P. Duong et al., “Construction of Robust Lightweight S-Boxes Using Enhanced Logistic and Enhanced Sine Maps,” in IEEE Access, vol. 12, pp. 63976-63994, 2024, doi: 10.1109/ACCESS.2024.3396452.

H. Kim et al., "A New Method for Designing Lightweight S-Boxes With High Differential and Linear Branch Numbers, and its Application," in IEEE Access, vol. 9, pp. 150592-150607, 2021, doi: 10.1109/ACCESS.2021.3126008.

http://www.ciphersbyritter.com/RES/SBOXDESN.HTM

J. Daemen, V. Rijmen, Specification of Rijndael, in: J. Daemen, V. Rijmen (Eds.), The Design of Rijndael: The Advanced Encryption Standard (AES), Springer, Berlin, Heidelberg, 2020: pp. 31–51. https://doi.org/10.1007/978-3-662-60769-5_3.

Nyberg, K. 1991. Perfect nonlinear S-boxes. Advances in Cryptology -- EUROCRYPT '91. 378-386.

G.V. Bard, Algebraic Cryptanalysis, Springer US, Boston, MA, 2009. https://doi.org/10.1007/978-0-387-88757-9.

N.T. Courtois, G.V. Bard, Algebraic Cryptanalysis of the Data Encryption Standard, in: S.D. Galbraith (Ed.), Cryptography and Coding, Springer, Berlin, Heidelberg, 2007: pp. 152–169. https://doi.org/10.1007/978-3-540-77272-9_10.

J.A. Clark, J.L. Jacob, S. Stepney, The design of S-boxes by simulated annealing, New Gener Comput 23 (2005) 219–231. https://doi.org/10.1007/BF03037656.

D. Souravlias, K.E. Parsopoulos, G.C. Meletiou, Designing bijective S-boxes using Algorithm Portfolios with limited time budgets, Applied Soft Computing 59 (2017) 475–486. https://doi.org/10.1016/j.asoc.2017.05.052.

L.D. Burnett, Heuristic Optimization of Boolean Functions and Substitution Boxes for Cryptography, phd, Queensland University of Technology, 2005. https://eprints.qut.edu.au/16023/ (accessed May 19, 2021).

W. Millan, L. Burnett, G. Carter, A. Clark, E. Dawson, Evolutionary Heuristics for Finding Cryptographically Strong S-Boxes, in: V. Varadharajan, Y. Mu (Eds.), Information and Communication Security, Springer, Berlin, Heidelberg, 1999: pp. 263–274. https://doi.org/10.1007/978-3-540-47942-0_22.

P. Tesar, A New Method for Generating High Non-Linearity S-Boxes, (2010). http://dspace.lib.vutbr.cz/xmlui/handle/11012/56957 (accessed August 16, 2020).

J.R. Abdurazzokov, Algorithm for generation of s-box using trigonometric transformation in genetic algorithm parameters, Shemical technology. Control and management 2023, №3 (111) pp.69-75

Hua Z. et al. Design and application of an S-box using complete Latin square //Nonlinear Dynamics. – 2021. – T. 104. – №. 1. – S. 807-825.

Muthu J. S., Murali P. Review of chaos detection techniques performed on chaotic maps and systems in image encryption //SN Computer Science. – 2021. – T. 2. – S. 1-24.

Szemplinska-Stupnicka W. Chaos, bifurcations and fractals around us. World Sci Ser Nonlinear Sci; 2003. https:// doi. org/ 10.1142/ 5419.

Naik R. B., Singh U. A review on applications of chaotic maps in pseudo-random number generators and encryption //Annals of Data Science. – 2024. – T. 11. – №. 1. – S. 25-50.

V. A. Thakor, M. A. Razzaque, A. D. Darji, and A. R. Patel, ‘‘A Novel 5-bit S-box Design for Lightweight Cryptography Algorithms,’’ Journal of Info. Secu. and Appl., vol. 73, p. 103444, Mar. 2023.

M. Irfan, M. A. Khan, and G. Oligeri, ‘‘Design of key-dependent s-box using chaotic logistic map for iot-enabled smart grid devices,’’ in 2024 4th International Conference on Smart Grid and Renewable Energy (SGRE), 2024, pp. 1–6.

A. Manzoor, A. H. Zahid and M. T. Hassan, "A New Dynamic Substitution Box for Data Security Using an Innovative Chaotic Map," in IEEE Access, vol. 10, pp. 74164-74174, 2022, doi: 10.1109/ACCESS.2022.3184012.

J. Alqahtani, M. Akram, G. A. Ali, N. Iqbal, A. Alqahtani and R. Alroobaea, “Elevating Network Security: A Novel S-Box Algorithm for Robust Data Encryption,” in IEEE Access, vol. 12, pp. 2123-2134, 2024, doi: 10.1109/ACCESS.2023.3348144

Downloads

Published

2024-06-28

How to Cite

Xudoykulov , Z. (2024). XAOTIK AKSLANTIRISHLARGA ASOSLANGAN S JADVALLARNI HOSIL QILISH ALGORITMI. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 2(3), 51–63. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v2i38