DATA PREPROCESSING METHODS FOR FACE RECOGNITION SYSTEMS

Authors

  • Makhmudova Shakhzoda Yorkinovna Tashkent University of Information Technologies named after Muhammad al-Khwarizmi

Keywords:

Normalization, СLAHE, arguments, conversion, correction, alignment

Abstract

Preprocessing is one of the most important stages for facial recognition systems and therefore the analysis of data processing methods takes a major role for the upcoming work on the system. There are many methods that are unique in their own way and the choice of one of them depends on the task we choose.

References

V. K. N. Kumar and B. Srinivasan,”New Biometric Approaches for Improved Person Identification Using Facial Detection”, International Journal on Image, Graphics and Signal Processing, vol. 4, no. 8, pp. 43-49, Aug. 2012.

DanWitzner Hansen and Qiang Ji. 2010 In the eye of the beholder: “A survey of models for eyes and gaze”. IEEE transactions on pattern analysis and machine intelligence 32, 3 (2010), 478–500.

Абламейко С.В., Лагуновский Д.М. “Обработка изображений: Технология, методы, применение”. – Мн.: Ин-т техн. кибернетики НАН Беларуси, 1999 – 300 с.

Mubashshera Shaikh TIEIT, RGPV, Shamaila Khan TIEIT, RGPV, Kaptan Singh TIEIT, RGPV, “A Detailed Survey on Iris Recognition System and Segmentation Methods” International Journal of Computer Applications (0975 – 8887) Volume 184 – No. 52, March 2023

Russakovsky, O. ImageNet Large Scale Visual Recognition Challenge O.Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei “Computer Vision and Pattern Recognition (CVPR)”. - 2015. - Vol. 18. - 43 p.

Ouyang, W. DeepId-Net: Multi-Stage and Deformable Deep Convolutional Neural Networks for Object Detection / W. Ouyang, P. Luo, X. Zeng, S. Qiu, Y. Tian, H. Li, S. Yang, Z. Wang, Y. Xiong, C. Qian, Z. Zhu, R. Wang, C. Loy, X. Wang, X.Tang “Computer Vision and Pattern Recognition(CVPR)”. - 2014. - Vol. 22. -P. 734-741.

Leila Zoubida, Réda Adjoudj “Integrating Face and the Both Irises for Personal Authentication”. I.J. Intelligent Systems and Applications, 2017, 3, 8-17 Published Online March 2017 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijisa.2017.03.02

Accord.NET Framework [Электронный ресурс].-Режим доступа: http://code.google.com/p/accord/downloads/list.

European Conference on Computer Vision (ECCV). 297–313. http://dx.doi.org/10.1007/978-3-319-46448-0 18

Introduction to Semantic Segmentation July 14, 2023. Semantic Segmentation in Computer Vision: Full Guide | Encord

Фильтрация полутонового изображения. Фильтрация полутонового изображения (studfile.net)

Определение границ объектов на изображении. Определение границ объектов на изображении [47, 1i] (studfile.net)

Tanner Helland “Seven grayscale conversion algorithms (with pseudocode and VB6 source code)”. Oct 1, 2011 Seven grayscale conversion algorithms (with pseudocode and VB6 source code) | tannerhelland.com

Published

2024-08-28

How to Cite

Makhmudova, S. (2024). DATA PREPROCESSING METHODS FOR FACE RECOGNITION SYSTEMS. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 2(4), 62–68. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v2i491