NEYRON KRIPTOGRAFIYASI VA TREE PARITY MACHINE MODELI

Authors

  • Davlatov Mirzo-Ulugbek Muhammad al-Xorazmiy nomidagi TATU

Keywords:

tree parity machine, neyron tarmoqlar, kriptografiya, parity machine, neyron kriptografiya, xavfsiz kalit yaratish, sinxronizatsiya, o‘zaro o‘qitish, Hebbian o‘rganish qoidasi, Anti-Hebbian qoidasi, tasodifiy yurish o‘rganish qoidasi, xavfsizlik hujumlari

Abstract

Ushbu maqolada neyron kriptografiyasi Tree Parity Machine (TPM) modeli asosida tadqiq etiladi. Ikkita neyron tarmoqning sinxronizatsiya orqali xavfsiz kalit yaratish usullari o‘rganilib, TPM o‘qitish qoidalari va xavfsizlikni ta’minlash uchun asosiy hujum turlari ko‘rib chiqilgan. Shuningdek, maqolada Hebbian, anti-Hebbian va tasodifiy yurish o‘rganish usullari hamda TPM yordamida xavfsiz kalit generatsiyasining usullari tahlil qilinadi.

References

Abed, S., 2012, Cryptography Using Artificial Neural Network, Al-dananeer, 14(1), pp.378-402.

Basin, D., Peterson, K., 2015, Information Security and Cryptography, Springer.

Dolecki, M., and Kozera, R., 2015, Distance of the initial weights of tree parity machine drawn from different distributions, Advances in Science and Technology Research Journal, 9(26), pp.137-142.

El-Zoghabi, A., Yassin, A. H., Hussein H. H., 2013, Survey Report on Cryptography Based on Neural Networks, International Journal of Emerging Technology and Advanced Engineering, 3(12), pp.456-462.

Godhavari, T., and Alamelu, Dr. N. R., 2010, Cryptography Using Neural Network, The Technology World Quarterly Journal, 2(4), pp.49-54.

Kanter, I., Kinzel, W., & Kanter, E. 2002. Secure exchange of information by synchronization of neural networks. Europhysics Letters (EPL), 57(1), str.141-147. doi:10.1209/epl/i2002-00552-9

Kilmov, A., Mityaguine, A., Shamir, A., 2002, Analysis of Neural Cryptography, AsiaCrypt 2002. pp.288-298.

Kinzel, W., and Kanter, I., 2002, [Internet] Neural Cryptography, Cornel University Library, Dostupno na http://arxiv.org/abs/cond-mat/0208453v1 Preuzeto: 20.08.2015. godine.

Klein, E., Mislovaty, R., Kanter, R., Ruttor, A., and Kinzel, W., 2004, Synchronization of neural networks by mutual learning and its application to cryptography, Advances in Neural Information Processing Systems, pp.689-696.

Mislovaty, R., Perchenok, Y., Kinzel, W., & Kanter, I. 2002. . Phys. Rev, . E 66, 066102. doi:10.1103/PhysRevE.66.066102

Prabakaran, N., Loganathan, P., and Vivekanandan, P., 2008, Neural Cryptography with Multiple Transfer Functions and Multiple Learning Rule, International Journal of Soft Computing, 3(3), pp.177-181.

Protić, D., 2015, Feedforward neural networks: The Levenberg-Marquardt optimization and the optimal brain surgeon pruning, Vojnotehnički glasnik/Military Technical Courier, 63(3), pp.11-28.

Rouse,M.,[Internet], Nonrepudiation, TechTarget, Dostupno na http://searchsecurity.techtarget.com/definition/nonrepudiation, Preuzeto: 14.08.2015. godine.

Rosen-Zvi, M., Kanter, I., & Kinzel, W. 2002. Cryptography based on neural networks analytical results. Journal of Physics A: Mathematical and General, 35(47). 35(47): L707-L713. doi:10.1088/0305-4470/35/47/104

Ruttor, A., 2006, Neural Synchronization and Cryptography, Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universitat. Fakultat fur Phyisik und Astronomie, Wurzburg.

Ruttor, A., Kinzel, W., Shacham, L., and Kanter, I., 2004 [Internet], Neural cryptography with feedback, Cornel University Library, Dostupno na: http://arxiv.org/abs/cond-mat/0311607v2 Preuzeto: 17.08.2015. godine.

Wang, D., 2015, Neural Synchronization Using Genetic Algorithm for Secure Key Establishment, Journal of Engineering Science and Technology Review, 8(2), pp.152-156.

Yu, W., and Cao, J., 2006, Cryptography based on delayed chaotic neural network, Physics Letters A, 356(4), Elsevier, pp.333-338.

Zhou, J., Xu, Q., Pei, W. and He, Y., 2004, Step to Improve Neural Cryptography Against Flipping Attacks, International Journal of Neural Systems, 14(6), pp.393-405.

CyberTrone 2004, [Internet] Neural Cryptography, Dostupno na Code Project web-site: www.codeproject.com, Preuzeto: 19.08.2015. godine.

Downloads

Published

2024-10-28

How to Cite

Davlatov , M.-U. (2024). NEYRON KRIPTOGRAFIYASI VA TREE PARITY MACHINE MODELI. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 2(5), 163–168. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v2i522