MATNLARNI SEMANTIK TAHLIL ASOSIDA ANOTATSIYALASH

Authors

  • Sadullayeva Shaxlo Azimboyevna Belarus-O‘bekiston qo‘shma tarmoqlararo amaliy texnik kvalifikatsiyalar instituti
  • Fayzullayeva Zarnigor Inatillayevna Toshkent axborot texnologiyalar universiteti

Keywords:

NLP, Deep learning, lexical analysis, artificial intelligence, summarization, model, vector, matrix, dasturiy ta’minot

Abstract

Sun’iy intellekt rivojlangan davrda shunisi e'tiborga loyiqki, matnni ma’no va mazmun jihatdan umumlashtirishdan foydalangan holda juda ko'p yutuqlar mavjud, 36,8 million aholiga ega O‘zbekistonda va butun dunyoda haligacha  o‘zbek tili va uning shevalarini tushunadigan, avtomatik tarzda semantik-morfologik tahlil qiladigan, matn mazmunidan kelib chiqib umumiy xulosa va annotasiya beradigan dasturiy ta'minot yaratilmagan. Shu bois o‘zbek tilidagi elektron matnni avtomatik tarzda semantik-morfologik tahlil qiladigan, matndagi kalit so‘zlarni aniqlaydigan, matn mazmunidan kelib chiqib annotasiya va xulosa yozib beradigan dasturiy ta'minot ishlab chiqish bosiqchlari ko‘rib chiqilgan.

References

Nosirjon o‘g‘li, K. N. . (2023). CORPUS ANALYSIS IN THE EXPRESSION OF STATUS VERBS. Miasto Przyszłości, 41, 315–318. Retrieved from https://miastoprzyszlosci.com.pl/index.php/mp/article/view/1951

Abduraxmonova N. Mashina tarjimasining lingvistik ta’minoti(monografiya).-Toshkent:Muharrir, 2018. 66-86 b.

Abduraxmonova N. O‘zbek tili elektron korpusining kompyuter modellari(monografiya).-Toshkent:Muharrir, 2021.165 b.

Напр., Krovetz R. (2000). Viewing morphology as an inference process. In Artificial Intelligence, 118, 277–294.

Напр., Sheremetyeva S., Nirenburg S., Nirenburg I. (1996). Generating Patent Claims From Interactive Input. In Proceedings of the 8th International Workshop on Natural Language Generation (Herstmonceux, Sussex, June 1996), 61–70.

Goldsmith, J. (2001). Unsupervised Learning of the Morphology of a Natural Language. In Computational Linguistics, 27(2), 153–198.

Ford A., & Singh R. (1991). Propedeutique Morphologique. Folia Linguistica, 25 (3–4), 549–575; Neuvel Sylvain (2002). Whole Word Morphologizer: Expanding the Word-Based Lexicon: A Nonstochastic Computational Approach. In Brain and Language 81, 454–463.

Neural Machine Translation (seq2seq) Tutorial – Режим доступа: https://www.tensorflow.org/tutorials/seq2seq.

Word2vec – Режим доступа: https://ru.wikipedia.org/wiki/Word2vec.

Klymenko, N. F. et al. (2014). Morfemno-slovotvirnyj fond ukrajins’koji movy jak doslidnyc’ka ta informacijno-dovidkova systema. In Klymenko N. F. Vybrani praci, pages 545–558, Kyiv.

Korpus ukrajins’koji movy. Accessible at: http://www.mova.info/corpus.aspx, retrieved 2017-03-15.

Aliqulov AX, Yadgarov TG, Abduganiyeva O,I. Development of information database for providing data connection in work with the moodle cloud system for the credit training. International Conference on Information Science and Communications Technologies ICISCT 2021 Applications, Trends and Opportunities, 3rd - 5th November, 2021, Tashkent and Urgench, Uzbekistan.

Egamberdiyev E. ANSAMBL USULI YORDAMIDA MULTITIPLI MA'LUMOTLARNI QAYTA ISHLASH //Sun’iy Intellekt Nazariyasi va Amaliyoti: Tajribalar, Muammolar va Istiqbollari. – 2024. – С. 27-30.

Downloads

Published

2024-12-27

How to Cite

Sadullayeva , S., & Файзуллаева , З. (2024). MATNLARNI SEMANTIK TAHLIL ASOSIDA ANOTATSIYALASH . DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 2(6), 117–122. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v2i624