MATNLARNI SEMANTIK TAHLIL ASOSIDA ANOTATSIYALASH
Ключевые слова:
NLP, Deep learning, lexical analysis, artificial intelligence, summarization, model, vector, matrix, dasturiy ta’minotАннотация
Sun’iy intellekt rivojlangan davrda shunisi e'tiborga loyiqki, matnni ma’no va mazmun jihatdan umumlashtirishdan foydalangan holda juda ko'p yutuqlar mavjud, 36,8 million aholiga ega O‘zbekistonda va butun dunyoda haligacha o‘zbek tili va uning shevalarini tushunadigan, avtomatik tarzda semantik-morfologik tahlil qiladigan, matn mazmunidan kelib chiqib umumiy xulosa va annotasiya beradigan dasturiy ta'minot yaratilmagan. Shu bois o‘zbek tilidagi elektron matnni avtomatik tarzda semantik-morfologik tahlil qiladigan, matndagi kalit so‘zlarni aniqlaydigan, matn mazmunidan kelib chiqib annotasiya va xulosa yozib beradigan dasturiy ta'minot ishlab chiqish bosiqchlari ko‘rib chiqilgan.
Библиографические ссылки
Nosirjon o‘g‘li, K. N. . (2023). CORPUS ANALYSIS IN THE EXPRESSION OF STATUS VERBS. Miasto Przyszłości, 41, 315–318. Retrieved from https://miastoprzyszlosci.com.pl/index.php/mp/article/view/1951
Abduraxmonova N. Mashina tarjimasining lingvistik ta’minoti(monografiya).-Toshkent:Muharrir, 2018. 66-86 b.
Abduraxmonova N. O‘zbek tili elektron korpusining kompyuter modellari(monografiya).-Toshkent:Muharrir, 2021.165 b.
Напр., Krovetz R. (2000). Viewing morphology as an inference process. In Artificial Intelligence, 118, 277–294.
Напр., Sheremetyeva S., Nirenburg S., Nirenburg I. (1996). Generating Patent Claims From Interactive Input. In Proceedings of the 8th International Workshop on Natural Language Generation (Herstmonceux, Sussex, June 1996), 61–70.
Goldsmith, J. (2001). Unsupervised Learning of the Morphology of a Natural Language. In Computational Linguistics, 27(2), 153–198.
Ford A., & Singh R. (1991). Propedeutique Morphologique. Folia Linguistica, 25 (3–4), 549–575; Neuvel Sylvain (2002). Whole Word Morphologizer: Expanding the Word-Based Lexicon: A Nonstochastic Computational Approach. In Brain and Language 81, 454–463.
Neural Machine Translation (seq2seq) Tutorial – Режим доступа: https://www.tensorflow.org/tutorials/seq2seq.
Word2vec – Режим доступа: https://ru.wikipedia.org/wiki/Word2vec.
Klymenko, N. F. et al. (2014). Morfemno-slovotvirnyj fond ukrajins’koji movy jak doslidnyc’ka ta informacijno-dovidkova systema. In Klymenko N. F. Vybrani praci, pages 545–558, Kyiv.
Korpus ukrajins’koji movy. Accessible at: http://www.mova.info/corpus.aspx, retrieved 2017-03-15.
Aliqulov AX, Yadgarov TG, Abduganiyeva O,I. Development of information database for providing data connection in work with the moodle cloud system for the credit training. International Conference on Information Science and Communications Technologies ICISCT 2021 Applications, Trends and Opportunities, 3rd - 5th November, 2021, Tashkent and Urgench, Uzbekistan.
Egamberdiyev E. ANSAMBL USULI YORDAMIDA MULTITIPLI MA'LUMOTLARNI QAYTA ISHLASH //Sun’iy Intellekt Nazariyasi va Amaliyoti: Tajribalar, Muammolar va Istiqbollari. – 2024. – С. 27-30.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2024 Sadullayeva Shaxlo Azimboyevna, Fayzullayeva Zarnigor Inatillayevna
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.