SARATON KASALLIKLARINI ERTA ANIQLASHNING MUHIMLIGI VA ZAMONAVAIY TEXNOLOGIYALARGA ASOSLANGAN USUL VA ALGORITMLARI

Authors

  • Nishanov Akhram Khasanovich Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti
  • Mamajanov Raxmatilla Yakubjanovich Denov tadbirkorlik va pedagogika instituti https://orcid.org/0000-0002-8188-6389
  • Xaydarov Sherali Islom o‘g‘li Denov tadbirkorlik va pedagogika instituti https://orcid.org/0000-0002-2514-3329
  • Mengturayev Farxod Ziyatovich Denov tadbirkorlik va pedagogika instituti

Keywords:

Saraton kasalliklari, erta diagnostika, sun’iy intellekt, mashinani o‘qitish, algoritmlar, sog‘liqni saqlash

Abstract

Saraton kasalliklari jahon bo‘ylab millionlab insonlarning hayotiga tahdid soluvchi eng jiddiy muammolardan biridir. Ularni erta bosqichda aniqlash hayotiy muhim bo‘lib, davolash natijalarini sezilarli darajada yaxshilaydi. Zamonaviy texnologiyalar va sun’iy intellekt asosidagi algoritmlar tibbiyotda yangi imkoniyatlar yaratib, kasallikni erta bosqichda aniqlashda muhim rol o‘ynamoqda. Tadqiqotda saraton kasalliklarini erta aniqlashning ahamiyati, zamonaviy texnologiyalarning bu boradagi o‘rni va algoritmlar yordamida diagnostika samaradorligini oshirish masalalari tahlil qilingan. Saraton kasalliklarini erta aniqlashning muhimligi jahonda ushbu kasallikka chalingan insonlarning kundan kunga oshib borish tendensiyalari, kasallik turlarini keskin ko‘payishi, kasallikni aniqlash protseduralarining qiyinlashib borishi va hokazo sabablar kesimida nazariy va amaliy chuqur o‘rganilayotganligi bilan asoslanadi. Shuningdek, tadqiqot natijalari tahlili shuni ko‘rsatadiki, insonning kasallik belgilari, yaʼni genetik, ekologik,  turmush tarzi, biologik, ijtimoiy-iqtisodiy, xavfli odat va sharoit kabi omillariga bog‘likligi bilan asoslangan. Yurtimizga zamonaviy texnologiyalarning kirib kelishi ushbu kasallikni texnik jihozlar va aloqa vositalari yordamida tez va aniq tashhislash imkonini berganligi asoslandi. Saraton kasalliklarining zamonaviy texnologiyalariga asoslangan erta aniqlashda tasviriy diagnostika, biomarkerlar yordamida tahlil va genetik tahlil usullari ishlab chiqildi. Har bir usullar kesimida sun‘iy intellekt va chuqur o‘qitish, prediktiv modellar, tasvirni segmentatsiyalash  kabi algoritmlar taklif etildi.

References

Bharati, M., & Ramageri, M. (2020). Data mining techniques and applications in cancer diagnosis and prognosis. International Journal of Advanced Research in Computer Science and Software Engineering, 10(4), 56–63.

Chen, J., Wang, Q., & Xia, Y. (2022). Artificial intelligence in early cancer detection: A systematic review. Computers in Biology and Medicine, 148, 105810.

Siegel, R. L., Miller, K. D., & Jemal, A. (2021). Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33.

Kohli, M., & Rajpal, S. (2020). Machine learning and its applications in cancer research: A review. Journal of Cancer Research and Clinical Oncology, 146(10), 2583–2602.

Kulkarni, S., & Shanbhag, N. (2020). Deep learning algorithms for cancer detection: Applications and challenges. Biomedical Signal Processing and Control, 61, 102096.

Wang, S., & Summers, R. M. (2021). Machine learning and radiomics in cancer imaging. Nature Reviews Clinical Oncology, 18(9), 493–507.

Ali, I., & Waseem, A. (2020). Nanotechnology for early cancer detection. Cancer Letters, 472, 126–136.

Esteva, A., et al. (2021). A guide to deep learning in oncology applications. Nature Medicine, 27(1), 26–36.

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56.

Nishanov Akhram Khasanovich, Mamazhanov Rakhmatilla Yakubzhanovich, Khaidarov Sherali Islom o‘g‘li, Xolbekov Abdusattor Maxammatovich, & Karimova Zilola Botirovna. (2024). Diagnostic Algorithm for Early Detection of Breast Cancer Based on Error Minimization Approach. International Journal of Innovative Science and Research Technology (IJISRT), 9(12), 1535–1542. https://doi.org/10.5281/zenodo.14565219

Nishanov, A. K., Djuraev, G. P., & Khasanova, M. A. (2020). Classification and feature selection in medical data preprocessing. Compusoft, 9(6), 3725-3732.

Nishanov, A. K., Ruzibaev, O. B., Chedjou, J. C., Kyamakya, K., Abhiram, K., De Silva, P., ... & Khasanova, M. A. (2020). Algorithm for the selection of informative symptoms in the classification of medical data. In Developments of Artificial Intelligence Technologies in Computation and Robotics: Proceedings of the 14th International FLINS Conference (FLINS 2020) (pp. 647-658).

Nishanov, A. H., Akbaraliev, B. B., & Tajibaev, S. K. (2020, October). About one feature selection algorithm in pattern recognition. In World Conference Intelligent System for Industrial Automation (pp. 103-112). Cham: Springer International Publishing.

Nishanov, A. K., Turakulov, K. A., & Turakhanov, K. V. (1999). A decision rule for identification of eye pathologies. Biomedical Engineering, 33, 178-179.

Nishanov, А. H., & Samandarov, B. S. (2015). Assessment model of monitoring and defining the completeness of course elements of information systems. Europaische Fachhochschule, (5), 56-58.

Nishanov, A. K., Allamov, O. T., Ruzibaev, O. B., Abdullaev, A. S., & Allamova, S. T. (2021, November). An approach to finding the most optimal route in a dynamic graph. In 2021 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 01-05). IEEE.

Atoev, S., Nishanov, A., & Abdirazakov, F. (2021, November). Object Tracking Method Based on Kalman Filter and Camshift Algorithm for UAV Applications. In 2021 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-4). IEEE.

Rakhmanov, A. T., Nishanov, A. K., Ruzibaev, O. B., & Shaazizova, M. E. (2020, November). On one method for solving the multi-class classification problem. In 2020 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-4). IEEE.

Nishanov, A., Mamajanov , R., Xaydarov , S., Mengturayev , F., & Yuldashev , R. (2024). sut bezi saraton kasalliklarini simptomlarini mashinali o‘qitishga tayyorlash bosqichlari. digital transformation and artificial intelligence, 2(6), 237–249. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v2i633

Nishanov, A., Mengturayev , F., Allayarov , U., & Xaydarov , S. (2024). endokrin kasalliklarini tashxislashda foydalaniladigan simptomlarni shakllantirish bosqichlari. digital transformation and artificial intelligence, 2(6), 228–236. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v2i632

Downloads

Published

2025-02-18

How to Cite

Nishanov, A., Mamajanov , R., Xaydarov, S., & Mengturayev , F. (2025). SARATON KASALLIKLARINI ERTA ANIQLASHNING MUHIMLIGI VA ZAMONAVAIY TEXNOLOGIYALARGA ASOSLANGAN USUL VA ALGORITMLARI. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 3(1), 110–117. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v3i117