O‘SIMLIK KASALLIKLARINI IDENTIFIKATSIYA QILISHDA INFORMATIV BELGILARNI SARALAB OLISH USULLARI TAHLILI

Authors

  • Murayeva Hodisaxon Mo‘sinjon qizi Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti

Keywords:

O‘simlik kasalliklari, xususiyatlarni tanlash, Chi-Square testi, Mutual Information, ANOVA, Tree-based Importance, LASSO, tasvirni tahlil qilish

Abstract

Ushbu tadqiqot ishida o‘simlik kasalliklarini aniqlashda xususiyatlarni tanlash usullarining samaradorligi o‘rganildi. Tomato Disease Detection datasetida turli xususiyatlarni tanlash usullari, jumladan Chi-Square testi, Mutual Information, ANNOVA, Tree-based Importance va LASSO qo‘llanilib, har bir usulning natijalari tahlil qilindi. Tadqiqot shuni ko‘rsatadiki, filter, wrapper va embedded usullari xususiyatlarni tanlashda muhim rol o‘ynaydi. Ushbu usullarni qo‘llash orqali kasalliklarni aniqlash modellari samaradorligini oshirish mumkin. Kelajakda xususiyatlarni tanlashning kombinatsiyalangan yondashuvlari yordamida yanada yuqori natijalarga erishish imkoniyatlari mavjud. Tadqiqot natijalari o‘simlik kasalliklarini aniqlashda texnologik yondashuvlarni rivojlantirishga xizmat qiladi.

References

Roelofs, R., Fridovich-Keil, S., Miller, J., Shankar, V., Hardt, M., Recht, B., & Schmidt, L. A meta analysis of overfitting in machine learning. In Proceedings of the 33rd International Conference on Neural Information Processing Systems (pp. 9179-9189). (2019, December).

Yassine, A., Mohamed, C., & Zinedine, A.. Feature selection based on pairwise evaluation. In 2017 Intelligent Systems and

Computer Vision (ISCV) (pp. 1-6). IEEE. (2017, April)

Akhiat, Y., Manzali, Y., Chahhou, M., & Zinedine, A. A New Noisy Random Forest Based Method for Feature Selection. Cybernetics and Information Technologies, 21(2), 10-28. (2021).

Akhiat, Y., Chahhou, M., & Zinedine, A. Feature selection based on graph representation. In 2018 IEEE 5th International Congress on Information Science and Technology (CiSt) (pp. 232-237). IEEE. (2018, October).

Battiti, R. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on neural networks, 5(4), 537-550. (1994).

Guyon, I., & Elisseeff, A. An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182. (2003).

Asnaoui, Y., Akhiat, Y., & Zinedine, A. Feature selection based on attributes clustering. In 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS) (pp. 1-5). IEEE. (2021, October).

Abisha A and Bharathi N, A Hybrid Feature Extraction and Feature Selection Mechanism to Predict Disease in Plant Leaves, Journal of Advances in Information Technology, Vol. 15, No. 4, 2024

R. Muthukrishnan and R. Rohini, “LASSO: A feature selection technique in predictive modeling for machine learning,” in Proc. 2016 IEEE International Conference on Advances in Computer Applications (ICACA), 2016, pp. 18−20

Downloads

Published

2025-04-28

How to Cite

Murayeva , H. (2025). O‘SIMLIK KASALLIKLARINI IDENTIFIKATSIYA QILISHDA INFORMATIV BELGILARNI SARALAB OLISH USULLARI TAHLILI. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 3(2), 109–112. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v3i217