TRANSPORT POG‘ONA PROTOKOLLARI ASOSIDA SHIFRLANGAN TRAFIKNI TASNIFLASH VA BOSHQARISH MODELI

Authors

Keywords:

tarmoq trafigi, paket, protokol, shifrlangan trafik, transport pog‘onasi, xavfsizlik, tarmoq monitoring

Abstract

Ushbu maqolada transport pog‘onasi protokollari asosida shifrlangan tarmoq trafikini tasniflash va boshqarish modeli taklif etilgan. Hozirgi kunda shifrlangan trafikning keng tarqalganligi tufayli, trafikni tasniflash va boshqarilishi masalasi dolzarb muammo bo‘lib qolmoqda. Maqolada taklif etilgan yondashuv transport pog‘onasi darajasida protokollarni tahlil qilishga asoslanadi va shifrlangan trafikni tasniflash uchun transport pog‘onasi segmentlarini ishlatadi, bu esa ilgari mavjud bo‘lgan metodlarga qaraganda samarali va tezkor yechimlar yaratadi. Ushbu dasturiy ta'minot yordamida ilovalar darajasidagi protokollarni aniqlashda 98-99% aniqlikka erishilgan. Ushbu model shifrlangan trafikni aniqlashda qo‘llanilishi mumkin bo‘lgan yangi yondashuvlarni taqdim etadi. Bunga qo‘shimcha ravishda, tarmoq trafigini boshqarish mexanizmlari ishlab chiqilib, foydalanuvchi interfeysi orqali oqimlarni nazorat qilish va cheklash imkoniyati yaratildi. Ushbu model tarmoq xavfsizligini ta'minlashda samarali vosita bo‘lib, uning amaliy qo‘llanishi tarmoq infratuzilmasining xavfsizligini yaxshilashga yordam beradi.

References

Petrosyan, A. Worldwide digital population 2025 // Statista. — Apr 1, 2025

Shafiq, M., Yu, X., Laghari, A.A., Yao, L., Karn, N.K., Abdessamia, F. Network Traffic Classification Techniques and Comparative Analysis Using Machine Learning Algorithms // In: 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, pp. 2451-2455. — 2016.

Azab, A., Khasawneh, M., Alrabaee, S., Choo, K.-K. R., & Sarsour, M. Network traffic classification: Techniques, datasets, and challenges // Digital Communications and Networks, 8(1), 1-11. — 2022.

Li, W., & Moore, A. W. A Machine Learning Approach for Efficient Traffic Classification // IEEE Xplore. — 2021.

Mondal, P. K., Aguirre, S. L., Benedetto, E., Shen, Y., Guo, M. A dynamic network traffic classifier using supervised ML for a Docker-based SDN network // Connection Science, 28(4), 293-308. — 2021.

Zhao, J., Jing, X., Yan, Z., Pedrycz, W. Network traffic classification for data fusion: A survey // Information Fusion, 72, 22-47. — 2021.

Bernaille, L., Teixeira, R., Salamatian, K. Early Application Identification // ACM CoNEXT 2006 Conference Proceedings. — 2006.

Moore, A. W., Papagiannaki, K. Toward the Accurate Identification of Network Applications // Proceedings of the 6th International Conference on Passive and Active Network Measurement (PAM'05), 41–54. — 2005. — Boston, Massachusetts, USA.

Rachmawati, S. M., Kim, D.-S., Lee, J. M. Machine Learning Algorithm in Network Traffic Classification // In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 320–325. — IEEE, Jeju Island, 2021.

Lim, H.-kyo, Kim, J.-Bong, Han, Y.-H. Packet-based Network Traffic Classification Using Deep Learning // In: Digital Signal Processing and Communications, February, 2019.

Downloads

Published

2025-06-15

How to Cite

Tojieva, F. (2025). TRANSPORT POG‘ONA PROTOKOLLARI ASOSIDA SHIFRLANGAN TRAFIKNI TASNIFLASH VA BOSHQARISH MODELI. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 3(3), 112–117. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v3i317