G‘OVAK-ELASTIK MUHITDA SIRT TO‘LQININING TARQALISHINI SONLI MODELLASHTIRISH (ANIZOTROP MUHIT TA’SIRIDA)
Keywords:
G‘ovak muhit, anizotropiya, sirt to‘lqinlari, Reley to‘lqini, Biot nazariyasi, sonli modellashtirish, kuchlanish tenzori, deformatsiya, viskozlik, elastiklik moduli, Tomsen parametrlari, Perfectly Matched Layer (PML) sharti, dispersiya, so‘nish, geofizika, seysmik to‘lqin, porozlik, elastik muhit, seysmik modellashtirishAbstract
Mazkur maqolada g‘ovak-elastik va anizotrop xossalarga ega bo‘lgan muhitda sirt to‘lqinlarining tarqalishini matematik va sonli modellashtirish masalasi ko‘rib chiqilgan. Biot nazariyasiga asoslangan tenglamalar tizimi asosida sirt to‘lqinlar uchun chegaraviy shartlar aniqlangan, Finite Difference Method (FDM) orqali ularning sonli yechimi berilgan. Modelda elastiklik, g‘ovaklik, suyuqlik viskozligi kabi parametrlar hisobga olingan. Kompyuter modellashtirish orqali to‘lqin tarqalishidagi dispersiya va amplituda o‘zgarishlari tahlil qilingan.
References
Biot, M. A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid. I & II. The Journal of the Acoustical Society of America, 28(2), 168-191. https://doi.org/10.1121/1.1908239
Carcione, J. M. (2015). Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media (3rd ed.). Elsevier.
Tomsen , L. (1986). Weak elastic anisotropy. Geophysics, 51(10), 1954-1966. https://doi.org/10.1190/1.1442051
Gurevich, B., & Schoenberg, M. (1999). Interface conditions for Biot’s equations of poroelasticity. Journal of the Acoustical Society of America, 105(5), 2585-2589.
Komatitsch, D., & Tromp, J. (1999). Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International, 139(3), 806-822.
Teshaboyev, I. A. (2019). G‘ovak muhitlarda to‘lqinlar tarqalishining matematik modellarini sonli yechish usullari (PhD dissertatsiyasi). O‘zbekiston Milliy universiteti.
Komilov, S. K., & Bobojonov, N. A. (2018). G‘ovak muhitlarda akustik to‘lqinlarning tarqalishi va ularni sonli modellashtirish. O‘zbekiston fizika jurnali, 20(3), 45-52.
G‘ulomov, I. U. (2016). Seysmik to‘lqinlarni matematik modellashtirishda anizotrop muhitlarning hisobga olinishi. Samarqand davlat universiteti ilmiy jurnali, 12(2), 33-39.
Abdullayev, I. K., & Ergashev, M. E. (2019). Elastik va g‘ovak muhitlarda to‘lqin jarayonlarining sonli modellashtirilishi. Andijon davlat universiteti ilmiy jurnali, 25(2), 51-59.
Mavko, G., Mukerji, T., & Dvorkin, J. (2020). The rock physics handbook (3rd ed.). Cambridge University Press.
Zhang, J., & McMechan, G. A. (2010). Modeling seismic wave propagation in 2D heterogeneous transversely isotropic porous media. Geophysics, 75(4), T89-T98.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Quzratov Muxriddin Akram o‘g‘li

This work is licensed under a Creative Commons Attribution 4.0 International License.