ANSAMBL USULLARIDAN FOYDALANIB KO‘KRAK BEZI SARATONINI TASHXISLASHNING SAMARADORLIGINI BAHOLASH

Authors

  • Dildora Muhamediyeva Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti
  • Madina Shoazizova Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti
  • Zilola Saidova Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti

Keywords:

Ko‘krak bezi saratoni, ansambl usullari, mashinaviy o‘qitish, Random Forest, Gradient Boosting, AdaBoost, Bagging, Model Stacking, AUC-ROC, tibbiy tashxis

Abstract

Mazkur maqolada ko‘krak bezi saratonini tashxislashda qo‘llaniladigan ansambl mashinaviy o‘qitish usullarining samaradorligi ilmiy jihatdan tahlil qilinadi. Tadqiqot doirasida Random Forest, Gradient Boosting, Bagging, AdaBoost va Model Stacking algoritmlaridan foydalanildi hamda ularning aniqlik, aniqlik darajasi, eslab qolish, F1-mezon va AUC-ROC kabi ko‘rsatkichlari taqqoslab o‘rganildi. Tahlil natijalari Model Stacking yondashuvi umumiy aniqlik va muvozanatli ko‘rsatkichlar bo‘yicha yuqori samaradorlik namoyon etganini ko‘rsatadi. Shu bilan birga, Random Forest algoritmi sinflarni ajratish qobiliyati jihatidan afzalliklarga ega ekani aniqlandi. Ushbu izlanishlar ansambl usullarining tibbiy tashxislashda qo‘llanish imkoniyatlarini kengaytirishini hamda klinik qarorlarni qo‘llab-quvvatlash tizimlarida samarali integratsiya qilinishi mumkinligini asoslab beradi.

References

1. Hamzagic A. R., Jankovic M. G., Cvetkovic D. et al. Machine learning model for prediction of development of cancer stem cell subpopulation in tumors subjected to polystyrene nanoparticles // Toxics. – 2024. – Vol. 12, №5. – P. 354. – DOI: 10.3390/toxics12050354.

2. Dhanya R., Paul I. R., Sindhu Akula S., Sivakumar M., Nair J. J. A comparative study for breast cancer prediction using machine learning and feature selection // Proc. 2019 Int. Conf. on Intelligent Computing and Control Systems (ICCS). – Madurai, India, 2019. – P. 1049–1055. – DOI: 10.1109/ICCS45141.2019.9065563.

3. Gupta M., Gupta B. A comparative study of breast cancer diagnosis using supervised machine learning techniques // Proc. 2018 2nd Int. Conf. on Computing Methodologies and Communication (ICCMC). – Erode, India, 2018. – P. 997–1002. – DOI: 10.1109/ICCMC.2018.8487537.

4. Feng Y., McGuire N., Walton A. et al. Predicting breast cancer-specific survival in metaplastic breast cancer patients using machine learning algorithms // J. Pathol. Inform. – 2023. – Vol. 14. – DOI: 10.1016/j.jpi.2023.100329.

5. Gopal V., Al-Turjman F., Kumar R., Anand L., Rajesh M. Feature selection and classification in breast cancer prediction using IoT and machine learning // Measurement. – 2021. – Vol. 178. – №109442. – DOI: 10.1016/j.measurement.2021.109442.

6. Arunadevi J., Ganeshamoorthi K. Feature selection facilitated classification for breast cancer prediction // Proc. 2019 3rd Int. Conf. on Computing Methodologies and Communication (ICCMC). – Erode, India, 2019. – P. 560–563. – DOI: 10.1109/ICCMC.2019.8819752.

7. Agustian, Nurhayati F., Lubis M. D. I. Particle swarm optimization feature selection for breast cancer prediction // Proc. 2020 8th Int. Conf. on Cyber and IT Service Management (CITSM). – Pangkal, Indonesia, 2020. – P. 1–6. – DOI: 10.1109/CITSM50537.2020.9268865.

8. Ebrahim M., Sedky A. A. H., Mesbah S. Accuracy assessment of machine learning algorithms used to predict breast cancer // Data. – 2023. – Vol. 8, №2. – P. 35. – DOI: 10.3390/data8020035.

9. Shaikh T. A., Ali R. Applying machine learning algorithms for early diagnosis and prediction of breast cancer risk // Lecture Notes in Networks and Systems. – P. 589–598. – DOI: 10.1007/978-981-13-1217-5_57.

Downloads

Published

2025-10-21

How to Cite

ANSAMBL USULLARIDAN FOYDALANIB KO‘KRAK BEZI SARATONINI TASHXISLASHNING SAMARADORLIGINI BAHOLASH. (2025). DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 3(5), 111-118. https://dtai.tsue.uz/index.php/dtai/article/view/v3i516