MODERN APPROACHES TO FORECASTING FOR BREAST CANCER DIAGNOSIS BASED ON DATA MINING
Keywords:
Машинное зрение, классификация, сортировка, зерно, анализ и обработка изображений, реальное времяAbstract
The article examines modern approaches to prediction and classification in breast cancer diagnosis based on data mining techniques. It describes the most commonly used datasets and modalities, stages of preprocessing and feature extraction, classical and deep learning models, validation and evaluation methods, issues of interpretability, clinical validation, regulatory considerations, and ethical aspects. Recommendations for practical implementation and directions for further research are provided.
References
1. Wang L. Mammography with deep learning for breast cancer detection. Front. Oncol. 14:1281922. 2024. 01-16. doi: 10.3389/fonc.2024.1281922
2. Qi Y.J., Su G.H., You C., et al. Radiomics in breast cancer: current advances and future directions. Cell Rep Med.2024; 5(9):101719. DOI: 10.1016/j.xcrm.2024.101719
3. Taylor CR, Monga N, Johnson C, Hawley JR, Patel M. Artificial intelligence applications in breast imaging: current status and future directions. Diagnostics (Basel) 2023;13:2041.
4. UCI Machine Learning Repository – Breast Cancer Wisconsin (Diagnostic).
5. Bejnordi, B. E., Veta, M., Van Diest, P. J., Van Ginneken, B., Karssemeijer, N., Litjens, G., ... & CAMELYON16 Consortium. (2017). Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. Jama, 318(22), 2199-2210.
6. McKinney SM, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020; 577:89–94
7. Rodriguez-Ruiz A, Lang K, Gubern-Merida A et al (2019) Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. J Natl Cancer Inst 111:916–922
8. Yala, A. ∙ Lehman, C. ∙ Schuster, T. et al. A deep learning mammography-based model for improved breast cancer risk prediction Radiology. 2019; 292:60-66.
9. Rebecca Sawyer Lee, Francisco Gimenez, Assaf Hoogi, Kanae Kawai Miyake, Mia Gorovoy, and Daniel L Rubin. A curated mammography data set for use in computeraided detection and diagnosis research. Scientific Data, 4:170177, 2017. ISSN 2052-4463. doi: 10.1038/sdata.2017.177. URL https://doi.org/10.1038/sdata.2017.177.
10. Campanella, G., Hanna, M.G., Geneslaw, L. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 25, 1301–1309 (2019). https://doi.org/10.1038/s41591-019-0508-1
11. Lambin, P., et al. (2017). Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology, 14(12), 749-762. https://doi.org/10.1038/nrclinonc.2017.141
12. Conti A, Duggento A, Indovina I, Guerrisi M, Toschi N. 2021. Radiomics in breast cancer classification and prediction. Semin. Cancer Biol. 72:238–50
13. Wolberg,William, Mangasarian, Olvi, Street,Nick, and Street,W.. (1995). Breast Cancer Wisconsin (Diagnostic). UCI Machine Learning Repository. https://doi.org/10.24432/C5DW2B.
14. Reports on regulatory/clinical trials and news: NHS trial of AI for breast cancer diagnosis (2025); FDA authorizations and recent AI risk tools (2025).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mukhamedieva Dildora Kabilovna, Doshanova Malika Yuldashovna, Shaazizova Madina Eldarovna

This work is licensed under a Creative Commons Attribution 4.0 International License.







