IJTIMOIY TARMOQLARDA KONTENT ASOSIDAGI MEDIA TA’SIRINI O‘RGANISH: RAQAMLI IZ MA’LUMOTLARINI YIG‘ISHNING API, MA’LUMOT HADYA QILISH VA KUZATISH USULLARI

Authors

  • Ochilov Bekzod Baxadirovich Axborot texnologiyalari va menejment universiteti

Keywords:

ijtimoiy tarmoqlar, raqamli iz ma’lumotlari, API, ma’lumot hadya qilish, kuzatish, media ta’siri, noto‘g‘ri ma’lumot

Abstract

Ijtimoiy tarmoqlar ta’sirini o‘rganish sohasida aniq kontentning roli yetarlicha tadqiq etilmagan. Bunga qisman ilgari kommunikatsiya fanida ijtimoiy tarmoq kontentiga bevosita kirish imkonini beradigan usullar mavjud emas edi. Raqamli iz ma’lumotlari (Digital Trace Data, DTD) ijtimoiy tarmoqlardan foydalanish jarayonida yaratilgan matnli va audiovizual kontentni yoritib berib, avval imkoni bo‘lmagan darajada alohida foydalanuvchi darajasida kontentdan foydalanishni tahlil qilish imkonini yaratadi. Biroq, raqamli iz ma’lumotlari maxsus ilmiy tadqiqot uchun ishlab chiqilmagani sababli, ularni yig‘ish va tahlil qilishda bir qator noaniqliklar mavjud. Ushbu maqola, raqamli iz ma’lumotlarini yig‘ishning uchta usuli – API lar, foydalanuvchi ma’lumotlarini topshirish (data donation) va kuzatish (tracking) – kommunikatsiya tadqiqotining uchta muhim yo‘nalishida (soxta axborot, algoritmik usullar) qanday qo‘llanishi mumkinligi haqida umumiy ma’lumot beradi. Biz ijtimoiy tarmoqlardagi mukammal bo‘lmagan kontent ma’lumotlarini qanday yig‘ish va ularni mazmunli ko‘rsatkichlarga aylantirish mumkinligi masalasini ko‘rib chiqamiz. Maqola yakunida har bir usulni amalga oshirish bo‘yicha yechimlar muhokama qilinadi hamda ularning afzalliklari va kamchiliklari taqqoslanadi.

References

1. Allcott, H., Braghieri, L., Eichmeyer, S., & Gentzkow, M. (2020). The welfare effects of social media. Review, 110(3), 629–676.

2. Araujo, T., Wonneberger, A., Neijens, P., & de Vreese, C. H. (2017). How much time do you spend online? Understanding and improving the accuracy of self‐reported measures of internet use. Communication Methods and Measures, 11(3), 173–190.

3. De Vreese, C. H., Boukes, M., Schuck, A., Vliegenthart, R., Bos, L., & Lelkes, Y. (2017). Linking survey and media content data: Opportunities, considerations, and pitfalls. Communication Methods and Measures, 11(4), 221– 244.

4. Freelon, D. (2014). On the interpretation of digital trace data in communication and social computing research. Journal of Broadcasting & Electronic Media, 58(1), 59–75.

5. Halavais, A. (2019). Overcoming terms of service: A proposal for ethical distributed research. Information, Communication & Society, 22(11), 1567–1581. 6. Howison, J., Wiggins, A., & Crowston, K. (2011). Validity issues in the use of social network analysis with digital trace data. Journal of the Association for Information Systems, 12(12), 767–797.

6. Lazer, D., Hargittai, E., Freelon, D., Gonzalez-Bailon, S., Munger, K., Ognyanova, K., & Radford, J. (2021). Meaningful measures of human society in the twenty-first century. Nature, 595(7866), 189–196.

7. Luiten, A., Hox, J. J. C. M., & de Leeuw, E. D. (2020). Survey nonresponse trends and fieldwork effort in the 21st century: Results of an international study across countries and surveys. Journal of Official Statistics, 36(3), 469–487.

8. Parry, D. A., Davidson, B. I., Sewall, C. J. R., Fisher, J. T., Mieczkowski, H., & Quintana, D. S. (2021). A systematic review and meta-analysis of discrepancies between logged and self-reported digital media use. Nature Human Behaviour, 5(11), 1535–1547.

9. Reeves, B., Ram, N., Robinson, T. N., Cummings, J. J., Giles, C. L., Pan, J., Chiatti, A., Cho, M. -J., Roehrick, K., Yang, X., Gagneja, A., Brinberg, M., Muise, D., Lu, Y., Luo, M., Fitzgerald, A., & Yeykelis, L. (2021). Human–Computer Interaction, 36(2), 150–201.

10. Scharkow, M. (2016). The accuracy of self-reported internet use—a validation study using client log data. Communication Methods and Measures, 10(1), 13–27.

11. Stadel, M., & Stulp, G. (2022). Balancing bias and burden in personal network studies. Social Networks, 70, 16–24.

12. Stier, S., Breuer, J., Siegers, P., & Thorson, K. (2020). Integrating survey data and digital trace data: Social Science Computer Review, 38(5), 503–516.

13. Tufekci, Z. (2014). Engineering the public: Big data, surveillance and computational politics. First Monday, 19(7).

14. Valkenburg, P., Beyens, I., Pouwels, J. L., van Driel, I. I., & Keijsers, L. (2021). Social media use and adolescents’ self-esteem: Heading for a person- specific media effects paradigm. Journal of Communication, 71(1), 56–78.

Downloads

Published

2025-10-21

How to Cite

IJTIMOIY TARMOQLARDA KONTENT ASOSIDAGI MEDIA TA’SIRINI O‘RGANISH: RAQAMLI IZ MA’LUMOTLARINI YIG‘ISHNING API, MA’LUMOT HADYA QILISH VA KUZATISH USULLARI. (2025). DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 3(5), 130-136. https://dtai.tsue.uz/index.php/dtai/article/view/v3i518