SUN’IY YO‘LDOSH TASVIRLARI VA SUN’IY INTELLEKT YORDAMIDA OROL DENGIZI HUDUDLARINI TADQIQ ETISH: TAJRIBALAR VA ILMIY MUAMMOLAR
Keywords:
Orol dengizi, sun’iy yo‘ldosh tasvirlari, sun’iy intellekt algoritmlari, ma’lumotlar to‘plami, dastlabki ishlov berish, geoma’lumotlarAbstract
Orol dengizi ekologik inqirozining oqibatlarini o‘rganish, uning geografik va ekologik holatini monitoring qilish dolzarb bo‘lgan ilmiy-texnik muammolardan hisoblanadi. Ushbu maqolada Orol dengizi hududlarida hozirgi kunga qadar olib borilgan ilmiy izlanishlar, mavjud muammolar va sun’iy yo‘ldosh tasvirlari hamda sun’iy intellekt (SI) texnologiyalari yordamida tadqiq qilish tahlil qilingan. Xususan, mashinali o‘qitish (MO‘) va chuqur o‘qitish (ChO‘) algoritmlarining tuproq sho‘rlanishi, o‘simlik qoplamining o‘zgarishi hamda suv sathining pasayishini aniqlashdagi roli ko‘rib chiqilgan. Shuningdek, mavjud geoma’lumotlar bazalari, ulardan foydalanish, sun’iy intellekt modellari uchun zarur bo‘lgan ma’lumotlar to‘plamlariga dastkabki ishlov berish usullari tahlil etilgan. Maqola yakunida Orolbo‘yi mintaqasida SI asosida samarali monitoring tizimini yo‘lga qo‘yish uchun taklif va tavsiyalar berilgan.
References
1. Stulina G.V. at all, “Summary of the Results Report of the Final Expedition on the Dried Bed of the Aral Sea”, Report, (2024), https://www.undp.org/uzbekistan/publications/ summary-results-report-final-expedition-dried-bed-aral-sea
2. Ginzburg, A.I., Kostianoy, A.G., Sheremet, N.A., Kravtsova, V.I. (2010). Satellite Monitoring of the Aral Sea Region. In: Kostianoy, A., Kosarev, A. (eds) The Aral Sea Environment. The Handbook of Environmental Chemistry(), vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2009_15
3. Löw, F., Navratil, P., Kotte, K., Schöler, H. F., & Bubenzer, O. (2013). Remote-sensing-based analysis of landscape change in the desiccated seabed of the Aral Sea--a potential tool for assessing the hazard degree of dust and salt storms. Environmental Monitoring and Assessment, 185(10), 8303–8319. https://doi.org/10.1007/S10661-013-3174-7
4. Berdimbetov, T., Pushpawela, B. G., Murzintcev, N., Nietullaeva, S., Gafforov, K. Sh., Tureniyazova, A., & Madetov, D. (2024). Unraveling the Intricate Links between the Dwindling Aral Sea and Climate Variability during 2002–2017. Climate, 12(7), 105. https://doi.org/10.3390/cli12070105
5. Jaksibaev, R., Gabbarov, S. N., Abdurahmanov, I., Sultashova, O. G., & Khafizova, Z. (2023). Vegetation monitoring in the South Aral Sea region by remote sensing and GIS. E3S Web of Conferences, 386, 01001. https://doi.org/10.1051/e3sconf/202338601001
6. Zhou, J., Ke, L., Ding, X., Wang, R., & Zeng, F. (2024). Monitoring Spatial–Temporal Variations in River Width in the Aral Sea Basin with Sentinel-2 Imagery. Remote Sensing. https://doi.org/10.3390/rs16050822
7. Singh, A., Behrangi, A., Fisher, J. B., & Reager, J. T. (2018). On the Desiccation of the South Aral Sea Observed from Spaceborne Missions. Remote Sensing, 10(5), 793. https://doi.org/10.3390/RS10050793
8. Tao, D., Shi, H., Gao, C., Zhan, J., & Ke, X. (2020). Water Storage Monitoring in the Aral Sea and its Endorheic Basin from Multisatellite Data and a Hydrological Model. Remote Sensing, 12(15), 2408. https://doi.org/10.3390/RS12152408
9. Sun, F., & Ma, R. (2019). Hydrologic changes of Aral Sea: A reveal by the combination of radar altimeter data and optical images. Annals of Gis: Geographic Information Sciences, 25(3), 247–261. https://doi.org/10.1080/19475683.2019.1626909
10. Mu, G., Chen, L., Hu, L., & Song, K. (2019). Remote Detection of Varying Water Storage in Relation to Surfacial Temperature of Aral Sea. Chinese Geographical Science, 20(5), 741–755. https://doi.org/10.1007/S11769-019-1069-4
11. Huang, S., Chen, X., Fang, H., Liu, T., Kurban, A., De Maeyer, P., & Van de Voorde, T. (2023). Monitoring Surface Water Area Changes in the Aral Sea Basin Using the Google Earth Engine Cloud Platform. Water, 15(9), 1729. https://doi.org/10.3390/w15091729
12. Wang, J., Liu, D., Ma, J., Cheng, Y., & Wang, L. (2021). Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin. Journal of Arid Land, 13(1), 40–55. https://doi.org/10.1007/S40333-021-0052-Y
13. Duan, Z., Wang, X., & Sun, L. (2022). Monitoring and Mapping of Soil Salinity on the Exposed Seabed of the Aral Sea, Central Asia. Water, 14(9), 1438. https://doi.org/10.3390/w14091438
14. Deroin J-P. Use of Remote Sensing Data to Study the Aral Sea Basin in Central Asia—Geoscience and Geological Hazards. Remote Sensing. 2025; 17(16):2814. https://doi.org/10.3390/rs17162814
15. Kim, T., Yun, Y., Park, S., Oh, J., & Han, Y. (2023). Change detection over the Aral Sea using relative radiometric normalization based on deep learning. Remote Sensing Letters, 14(8), 821–832. https://doi.org/10.1080/2150704x.2023.2242589
16. Shen, H., Abuduwaili,, A., Ma, L., & Samat, A. (2019). Remote sensing-based land surface change dentification and prediction in the Aral Sea bed, Central Asia. International Journal of Environmental Science and Technology, 16(4), 2031–2046. https://doi.org/10.1007/S13762-018-1801-0
17. Löw, F., Dimov, D., Kenjabaev, S., Zaitov, S., Stulina, G., & Dukhovny, V. (2021). Land cover change detection in the Aralkum with multi-source satellite datasets. GIScience & Remote Sensing, 59(1), 17–35. https://doi.org/10.1080/15481603.2021.2009232
18. Shanmugapriya, N. (2024). Synergizing Remote Sensing, Geospatial Intelligence, Applied Nonlinear Analysis, and AI for Sustainable Environmental Monitoring. Communications on Applied Nonlinear Analysis. https://doi.org/10.52783/cana.v31.1222
19. Ismail, R. J., M, S. A., Hawezi, R. Sc., Mohammed, A. H., Mahdi, A. A., Karim, N. K., Bag, M. K. D., & Othman, M. S. E. (2024). Analyzing Remote Sensing Images Based on Climate Prediction Model for Water Resources Using Deep Learning. https://doi.org/10.24086/cocos2024/paper.1299
20. Samarkhanov, K.; Abuduwaili, J.; Samat, A.; Issanova, G. The Spatial and Temporal Land Cover Patterns of the Qazaly Irrigation Zone in 2003–2018: The Case of Syrdarya River’s Lower Reaches, Kazakhstan. Sustainability 2019, 11, 4035. https://doi.org/10.3390/su11154035
21. Chatterjee, R., Chatterjee, A. & Islam, S.H. Deep learning techniques for observing the impact of the global warming from satellite images of water-bodies. Multimed Tools Appl 81, 6115–6130 (2022). https://doi.org/10.1007/s11042-021-11811-1
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Rashid Nasimov, Nigoraxon Nasimova, Charos Xidirova, Akmalbek Abdusalomov, Zavqiddin Temirov

This work is licensed under a Creative Commons Attribution 4.0 International License.







