O‘ZBEK TILIDAGI GAPLARNI PERIFRAZ QILISH AXBOROT TIZIMINING FUNKSIONAL JARAYONLARINI LOYIHALASHTIRISH
Keywords:
biznes-jarayon, modellashtirish, perifraz, axborot tizimi, semantik analizatorAbstract
Hozirgi kunda biznes-jarayonlarni modellashtirish metodologiyalari va vositalari bir vaqtning o‘zida ilmiy tadqiqot yo‘nalishi va dasturiy ta’minot (DT) bozorining rivojlanayotgan sektoriga aylangan. Ushbu usullar axborot tizimlarining zaif tomonlarini aniqlash va ularni bartaraf etish uchun zarur choralarni taklif qilish uchun ishlatilishi mumkin. Ushbu maqolada o‘zbek tilida gaplarni perefraz qiluvchi axborot tizimining biznes-jarayonlari BPMN metadologiyasi yordamida shakllantirildi. Semantik analizator axborot tizimining umumiy biznes-jarayonidagi har bir jarayonda alohida to‘xtalib o‘tilgan. Tabiiy tildagi matnlarni perefraz qilishda foydalaniladigan yondashuvlar ko‘rib chiqilgan.
References
Pronoza E., Yagunova E., Kochetkova N. Sentence Paraphrase Graphs: Classification Based on Predictive Models or Annotators’ Decisions?. In: Sidorov G., Herrera-Alcántara O. (eds) Advances in Computational Intelligence. MICAI 2016. Lecture Notes in Computer Science, vol 10061. Springer, Cham (2017).
Pronoza, E., Yagunova, E. Comparison of sentence similarity measures for Russian paraphrase identification. In Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT), pp. 74–82, IEEE (2015a).
Pronoza, E., Yagunova, E. Low-Level Features for Paraphrase Identification. In: Sidorov, G., Galicia-Haro, Sofía N. (eds.) MICAI 2015. LNCS, vol. 9413, pp. 59–71. Springer, Cham (2015b).
Pronoza, E., Yagunova, E., Pronoza, A. Construction of a Russian Paraphrase Corpus: Unsupervised Paraphrase Extraction. Proceedings of the 9th Russian Summer School in Information Retrieval, August 24–28, 2015, Saint-Petersburg, Russia, (RuSSIR 2015, Young Scientist Conference), Springer CCIS (2015).
Androutsopoulos, I., Prodromos Malakasiotis, P. A survey of paraphrasing and textual entailment methods. Journal of Artificial Intelligence Research, v. 38: 135–187 (2010).
Fernando, S., Stevenson, M. A semantic similarity approach to paraphrase detection. In Proceedings of the 11th Annual Research Colloquium of the UK Special Interest Group for Computational Linguistics, pp. 45–52, (2008).
Pham, N., Bernardi, R., Zhang, Y. Z., Baroni, M. Sentence paraphrase detection: When determiners and word order make the difference. In Proceedings of the Towards a Formal Distributional Semantics Workshop at IWCS 2013, pp. 21–29 (2013).
Rocktäschel, T., Grefenstette, E., Hermann, K. M., Kočiský, T., Blunsom, P. Reasoning about entailment with neural attention. arXiv preprint arXiv:1509.06664. (2015)
He, H., Gimpel, K., Lin, J. Multi-perspective sentence similarity modeling with convolutional neural networks. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1576–1586 (2015).
M. J. Kusner, Y. Sun, N. I. Kolkin, K. Q. Weinberger, From Word Embeddings to Document Distances, JMLR: W&CP 37 (2015) 957-966.
Y. Zhang, J. Baldridge, L. He, Zhang Y. PAWS: Paraphrase Adversaries from Word Scrambling, ArXiv, 2019. DOI: 10.48550/arXiv.1904.01130.
V.-A. Oliinyk, V. Vysotska, Y. Burov, K. Mykich, V. B. Fernandes, Propaganda Detection in Text Data Based on NLP and Machine Learning, CEUR workshop proceedings 2631 (2020) 132-144.
Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov, RoBERTa: A Robustly Optimized BERT Pretraining Approach, ArXiv, 2019. DOI: 10.48550/arXiv.1907.11692.
V. Vysotska, Y. Burov, V. Lytvyn, A. Demchuk, Defining Author’s Style for Plagiarism Detection in Academic Environment, in: Proceedings of the International Conference on Data Stream Mining and Processing, DSMP, 2018, pp. 128-133. DOI: 10.1109/DSMP.2018.8478574.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Axmedova Xusniya Xusanovna

This work is licensed under a Creative Commons Attribution 4.0 International License.







