OʻZBEK TILIDAGI MATNLARNI TAHLIL QILISHDA NOMLI OBYEKTNI TANIB OLISH (NER) YONDASHUVI
Keywords:
tabiiy tilni qayta ishlash, nomlangan obyektlarni tanib olish, NER, mashinali o‘qitish, chuqur o‘rganish, gibrid yondashuv, matn tahlili, semantik axborotAbstract
Ushbu maqolada o‘zbek tilidagi matnlarni tahlil qilish jarayonida nomlangan obyektlarni tanib olish (Named Entity Recognition-NER) yondashuvlari har tomonlama tahlil qilingan. Tadqiqot doirasida NER tizimlarining nazariy asoslari, qoida asoslangan, mashinali o‘qitishga asoslangan hamda gibrid yondashuvlar batafsil ko‘rib chiqilgan va ularning afzalliklari hamda cheklovlari solishtirma tahlil asosida yoritilgan. Shuningdek, turli tillar va sohalarda, jumladan tibbiyot, oziq-ovqat va axborot tizimlarida qo‘llanilgan zamonaviy NER modellarining ishlash samaradorligi tahlil qilingan. Tadqiqot natijalari NER tizimlarining katta hajmdagi matnli ma’lumotlardan semantik axborotni avtomatik ajratib olishdagi ahamiyatini ko‘rsatadi hamda kam resursli tillar, xususan o‘zbek tili uchun moslashuvchan va samarali NER modellarini ishlab chiqish istiqbollarini belgilab beradi.
References
1. Li J. et al. A survey on deep learning for named entity recognition //IEEE transactions on knowledge and data engineering. – 2020. – Т. 34. – №. 1. – С. 50-70.
2. Marrero M. et al. Named entity recognition: fallacies, challenges and opportunities //Computer Standards & Interfaces. – 2013. – Т. 35. – №. 5. – С. 482-489.
3. Gambäck B., Sikdar U. K. Named entity recognition for Amharic using deep learning //2017 IST-Africa Week Conference (IST-Africa). – IEEE, 2017. – С. 1-8.
4. Gardie B., Asemie S., Azezew K. Anyuak Language Named Entity Recognition Using Deep Learning Approach //Indian Journal of Science and Technology. – 2021. – Т. 14. – №. 39. – С. 2998-3006.
5. Sun P. et al. An overview of named entity recognition //2018 International Conference on Asian Language Processing (IALP). – IEEE, 2018. – С. 273-278.
6. Yadav V., Bethard S. A survey on recent advances in named entity recognition from deep learning models //Proceedings of the 27th international conference on computational linguistics. – 2018. – С. 2145-2158.
7. Zhang L., Pan Y., Zhang T. Focused named entity recognition using machine learning //Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval. – 2004. – С. 281-288.
8. Baluja S., Mittal V. O., Sukthankar R. Applying machine learning for high‐performance named‐entity extraction //Computational Intelligence. – 2000. – Т. 16. – №. 4. – С. 586-595.
9. Jehangir B., Radhakrishnan S., Agarwal R. A survey on named entity recognition—datasets, tools, and methodologies //Natural Language Processing Journal. – 2023. – Т. 3. – С. 100017.
10. Anandika A., Mishra S. P. A study on machine learning approaches for named entity recognition //2019 International Conference on Applied Machine Learning (ICAML). – IEEE, 2019. – С. 153-159.
11. Alshaikhdeeb B., Ahmad K. Biomedical named entity recognition: a review //International Journal on Advanced Science, Engineering and Information Technology. – 2016. – Т. 6. – №. 6. – С. 889-895.
12. Zhang S., Elhadad N. Unsupervised biomedical named entity recognition: Experiments with clinical and biological texts //Journal of biomedical informatics. – 2013. – Т. 46. – №. 6. – С. 1088-1098.
13. Kocaman V., Talby D. Biomedical named entity recognition at scale //International Conference on Pattern Recognition. – Cham : Springer International Publishing, 2021. – С. 635-646.
14. Habibi M. et al. Deep learning with word embeddings improves biomedical named entity recognition //Bioinformatics. – 2017. – Т. 33. – №. 14. – С. i37-i48.
15. Gridach M. Character-level neural network for biomedical named entity recognition //Journal of biomedical informatics. – 2017. – Т. 70. – С. 85-91.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kenjayev Xamdam Bazarbayevich

This work is licensed under a Creative Commons Attribution 4.0 International License.







