TO‘LIQ BO‘LMAGAN MA’LUMOTLARGA ASOSLANGAN MURAKKAB TEXNIK TIZIMLARNING INTELLEKTUAL BOSHQARUV MODELLARINI ISHLAB CHIQISH
Keywords:
Intellektual boshqaruv, modellashtirish, noravshan mantiq, tegishlilik funksiyasi, algoritmAbstract
Ushbu maqolada to‘liq bo‘lmagan va noaniq ma’lumotlar sharoitida murakkab texnik tizimlarni samarali boshqarish masalalari ko‘rib chiqiladi. Tadqiqotning maqsadi – axborot yetishmovchiligi, o‘lchov xatoliklari va tashqi omillar ta’siri ostida ishlaydigan tizimlar uchun intellektual boshqaruv modellarini ishlab chiqish va ularning barqarorligini ta’minlashdir. Taklif etilgan yondashuv sun’iy intellekt, noaniqlik nazariyasi, hamda moslashuvchan boshqaruv usullariga asoslanadi. Maqolada ma’lumotlarni qayta ishlashning ehtimollik va neyron tarmoqlar asosidagi metodlari, shuningdek, qaror qabul qilishning gibrid algoritmlari tahlil qilinadi. Natijada, to‘liq bo‘lmagan ma’lumotlar sharoitida tizim holatini aniqlash, prognozlash va optimal boshqaruv signalini shakllantirish imkonini beruvchi model taklif etiladi. Tadqiqot natijalari avtomatlashtirilgan ishlab chiqarish, robototexnika, energetika va transport tizimlarida qo‘llash uchun amaliy ahamiyatga ega.
References
1. Collotta M., Bello L.L., Pau G. A novel approach for dynamic traffic lights management based on Wireless Sensor Networks and multiple fuzzy logic controllers. // Expert Systems with Applications. Mexico 2015, 42(13), 5403–5415 pp.
2. Belaud G., Litrico X. and Ribot-Bruno J.- P. “Hydraulic modeling of an automatic upstream water-level control gate”. // Journal of Irrigation and Drainage Engineering, 131(2): New Delhi, 2005, 176–189 pp.
3. Goloskokov D.P. “Analiticheskiy raschet vodouderjivayushey obshivki segmentnogo zatvora v gidrotexntcheskix soorujeniyax” Jurnal universiteta vodnix kommunikasiy. 2012. Vipusk 4.–S. 22-29.
4. Panigrahi D.P., Mujumdar P.P. Reservoir operation modeling with fuzzy logic // Water Resour Manag 14: Michigan, 2000, 89–109 pp.
5. Slutzman J. and Smith, J. “Effects of flood control structures on flood response for hurricane Floyd in the Brandwyne Creek Watershed, Pennsylvania” // J. Hydrol. Eng, Dublin, 2016, 432–441 pp.
6. Srdjevic B., Medeiros Y.P., Faria A. C. An objective multi-criteria evaluation of water management scenarios. // Water Resour Manage 18: Istanbul, 2014, 35–54 pp.
7. Zayniddinov B.G. Hisorak suv omborini avtomatlashtirilgan texnik vositalarini boshqaruvida SCADA tizimini qo‘llash va uning samaradorligini oshirish. Vestnik TashGTU Toshkent – 2017. 53-57 b.
8. Capart H., Bogaerts C., Kevers-Leclercq J. and Zech Y. “Robust numerical treatment of flow transitions at drainage pipe boundaries” / Water Sci. Technol., 39(9), Chicago, 1999, 113–120 pp.
9. Sabzi H. Z. & King J. P. Evaluation of water reuse options through stochastic floods: A case study in Diez Logos flood catchment area, Southern New Mexico. / World environmental and water resources congress, Mexico, 2015, 1209 1218 pp.
10. Kozines Galina Leonidova. Prostranstvennoe chislennoe modelirovanie i sovershenstvovanie konstruksiy gidrotexnicheskix zatvorov: avtoreferat …kandidata texnicheskix nauk: 05.23.01. Sankt Peterburg 2007.– 32 s.
11. Farrukh Saleem., Muhammad Sharif., Aman Ullah Khan. An Efficient and Secure Method for Public Key Cryptosystems. / National Conference on Information Technology: Present Practices and Challenges, Asia-Pacific Institute of Management, New Delhi, India, August 31 - September 1, 2007, 911– 916 pp.
12. Singh A.P. An integrated fuzzy approach to assess water resources’ potential in a watershed. // J Comput Math 1: Panjab, 2008, 7–23 pp.
13. Talon A., Curt C., Bolssler D. Perfprmance assessment based on evidence theory and fuzzy logic: application to building and dam performance. // J Comput Civil Eng 28: Brazil, 2014, 124–133 pp.
14. Bingul Z., Karahan O. A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control. // Expert Systems with Applications. Mexico 2011, 38(1), 1017–1031 pp.
15. Srinivas R., Bhakar P., Singh A. P. Groundwater quality assessment in some selected area of Rajastan, India using fuzzy multi-criteria decision making tool. ICWRCOE 15. Aquatic Proced 4: Mangalor, 2015, 1023–1030 pp.
16. Moorthi P.V.P., Ajit Pratap Singh, Agnivesh P. Regulation of water resources systems using fuzzy logic: a case study of Amaravathi dam // Applied Water Science (2018) 8:132.
17. Gurocak H.B. A genetic-algorithm-based method for tuning fuzzy logic controllers // Fuzzy Sets and Systems. Tokio, 1999. № 108. 39-47 pp.
18. Herrera F., Lozano M., Verdegay J.L. Tuning fuzzy controllers by genetic algorithms // Internat. J. Approx. Reasoning. 1995. № 1. Kompen, 299-315 pp.
19. P. King and E. Mamdani. “The application of fuzzy control to industrial process” // Automatica, vol. 13, pp. 235-242, 1997.
20. Lee C. C. Fuzzy logic in control systems: Fuzzy logic controller // IEEE Transactions on Systems, Man and Cybernetics, 20(2), Pekin, 1990, 419–435 pp.
21. Averkin A.N., Fedoseeva I.N. Parametricheskie logiki v intel lektualnix sistemax upravleniya. –M.: VS PAH, 2000. 213– 215 c.
22. Yusupbekov N.R., Aliev R.A., R.R.Aliev., Yusupbekov A.N. Intellektualnie sistemi upravleniya i prinyatiya resheniy. Oʻzbekiston milliy ensiklopediyasi. Toshkent 2014. 87-109 bb.
23. Takagi T., Sugeno M. Stability Analysis and Design of Fuzzy Control Systems // Fuzzy Sets and Systems.– Tokio, 2008. Vol. 45. № 2. 135-156 pp.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zayniddinov Bobirjon G‘ofirovich

This work is licensed under a Creative Commons Attribution 4.0 International License.







