TASVIR SIFATINI BAHOLASH KO‘RSATKICHLARI
Keywords:
tasvir sifati, piksel, etalon, shovqin, ko‘rsatkich, qayta ishlash, xalaqit, neyron tarmoq, fazoviy va chastotali soha, algoritmAbstract
Tasvirlash sohasidagi yutuqlar tez sur’atlar bilan davom etmoqda va bozorga yangi hamda ilg‘or mahsulotlar doimiy ravishda kirib kelmoqda. Yangi texnologiyalar joriy texnologiyaga nisbatan yuqori sifatli tasvirlarni ishlab chiqarishini tekshirish uchun sifatni baholashning samarali bir turi talab etiladi. Bu o‘z navbatida, tasvir sifatini baholash ko‘rsatkichlarini keng qamrovli tahlil qilish hamda ularni har biri bo‘yicha ma’lumotlarni bitta joyga yig‘ishni dolzarb masalaga aylantiradi. Shuning uchun, mazkur ishda tasvir sifatini baholash ko‘rsatkichlarini tarixi va tavsifi, ularni tasniflanishi haqida ma’lumotlar keltirilgan. Shuningdek, soha bo‘yicha mavjud adabiyotlar tahlili, tasvir sifatini baholash ko‘rsatkichlarini yutuq hamda kamchiliklari keltirilgan. Mazkur tadqiqot ishini maqsadi sifatni baholash ko‘rsatkichlarini alohida guruhlarga ajratish hamda ularni subyektiv idrok bilan mos kelishini baholashdan iborat. Bunday tasniflash ma’lum bir muammo yoki buzilish uchun eng mos keladigan sifatni baholash ko‘rsatkichini tanlashda foydali bo‘lishi mumkin.
References
2. Wang Z., Bovik A.C. Modern image quality assessment. – N.Y.: Morgan & Claypool, 2006. – 157 p
3. Mamatov, N., Dadaxanov, M., Jalelova, M., & Samijonov, B. (2024, May). X-ray image contrast estimation and enhancement algorithms. In AIP Conference Proceedings (Vol. 3147, No. 1). AIP Publishing.
4. Dr. Vivek Sharma, Hariom C. Agnihotri, Chetan H. Patil. A Study on Various Image Quality Assessment Measures. International Journal of Research in Advent Technology, Vol.2, No.3, March 2014. E-ISSN: 2321-9637. Pp.-345-350.
5. Mamatov, N. S., Jalelova, M. M., Tojiboyeva, S. X., & Samijonov, B. N. (2023). Methods for Reducing Mixed Noise in an Image. Methods, 10(12).
7. Mamatov, N. S., Jalelova, M. M., Samijonov, A. N., & Samijonov, B. N. (2025). A method for removing mixed noise in images. In Artificial Intelligence and Information Technologies (pp. 489-495). CRC Press.
8. Mamatov, N., Niyozmatova, N., Jalelova, M., Samijonov, A., & Tojiboyeva, S. (2024, May). Methods for increasing the contrast of drone agricultural images. In AIP Conference Proceedings (Vol. 3147, No. 1). AIP Publishing.
9. Mamatov, N. S., Niyozmatova, N. A., Jalelova, M. M., Samijonov, A. N., & Tojiboyeva, S. X. (2023). Methods for improving contrast of agricultural images. In E3S Web of Conferences (Vol. 401, p. 04020). EDP Sciences.
10. Wang Z., Bovik A.C. Modern image quality assessment. – N.Y.: Morgan & Claypool, 2006. – 157 p
11. Wang Z., Simoncelli E.P. Translation insensitive image similarity in complex wavelet domain // IEEE Inter. Conf. Acoustic, Speech and Signal Processing. – Philadelphia, 2005. – V. 2. – P. 673–676.
12. M. Kudˇelka Jr. Image Quality Assessment. WDS'12 Proceedings of Contributed Papers, Part I, 94–99, 2012.
13. K. -H. Thung and P. Raveendran, "A survey of image quality measures," 2009 International Conference for Technical Postgraduates (TECHPOS), Kuala Lumpur, Malaysia, 2009, pp. 1-4, doi: 10.1109/TECHPOS.2009.5412098.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mamatov Narzullo Solidjonovich, Jalelova Malika Moyatdin qizi, Jumayev Bobur Juma o‘g‘li

This work is licensed under a Creative Commons Attribution 4.0 International License.







