R-FUNKTSIYALAR VA ITERATSION FUNKSIYALAR TIZIMI ASOSIDA KUB-TSILINDR KOMPOZITSIYASIDAN HOSIL BOʻLGAN 3D FRAKTAL STRUKTURALARNI GEOMETRIK MODELLASHTIRISH

Authors

  • Nuraliyev Faxriddin Murodillayevich Muhammmad al-Xorazmiy nomidagi TATU
  • Narzulloyev Oybek Mirzayevich Muhammmad al-Xorazmiy nomidagi TATU
  • Nurimbetov Baxbergen Tolibayevich Muhammmad al-Xorazmiy nomidagi TATU

Keywords:

R-funktsiyalar, iteratsion funksiyalar tizimi (IFS), 3D fraktal modellashtirish, kub, tsilindr, fraktal antennalar, geometrik modellashtirish, Menger gubkasi, kompyuter grafika

Abstract

Mazkur maqolada R-funktsiyalar va iteratsion funksiyalar tizimi (IFS) integratsiyasi asosida kub va tsilindr shakllarining analitik kombinatsiyasidan hosil bo‘lgan uch o‘lchovli fraktal struktura modellashtirilgan. Tadqiqotda kubning chegaralari va uchta o‘zaro perpendikulyar tsilindr tenglamalari R-funktsiyalar yordamida differensial tarzda birlashtirilib, natijada silliq sirtli va markaziy simmetriyaga ega fraktaldan avvalgi shakl (pred-fraktal) modeli hosil qilindi. So‘ngra ushbu shakl IFS yondashuvi orqali rekursiv takrorlanib, Menger tipidagi 3D fraktal strukturalar ketma-ket iteratsiyalar asosida yaratildi. Natijalar fraktal antennalar dizayni, 3D bosma texnologiyalar, grafik dizayn va matematik vizualizatsiya sohalarida amaliy qo‘llanish imkoniyatiga ega.

References

1. Venneri, F., Fractal Metasurfaces and Antennas: An Overview // Applied Sciences. 2024. Vol. 14, No. 7. – P. 2843. DOI: 10.3390/app14072843

2. Li, J., Minkowski-Sierpinski Fractal Structure-Inspired 2×2 Antenna Array // Micromachines. 2023. Vol. 14, No. 2. – P. 158. DOI: 10.3390/mi14020158

3. Varshney, A., High-Gain Multi-Band Koch Fractal FSS Antenna for Sub-6 GHz Applications // Applied Sciences. 2024. Vol. 14, No. 19. – P. 9022. DOI: 10.3390/app14199022

4. Hernandez, L., Triangular Sierpinski Microwave Band-Stop Resonators for K-Band // Sensors. 2023. Vol. 23, No. 12. – P. 5478. DOI: 10.3390/s23125478

5. Rahim, A., Efficient Broadband Fractal Antenna for WiMAX and WLAN // Heliyon. 2024. Vol. 10, No. 4. – P. e3045. DOI: 10.1016/j.heliyon.2024.e3045

6. Wang, C.; An, W., Improved 3D Box-Counting Dimension Computing Technology for Estimating the Complexity of 3D Models // IEEE Access. 2022. Vol. 10. – P. 12234–12246. DOI: 10.1109/ACCESS.2022.3145852

7. Kaur, G., 3D Printed Antennas for 5G Communication (Review) // Int. J. of Lightweight Materials and Manufacture. 2023. Vol. 6, No. 2. – P. 215–225. DOI: 10.1016/j.ijlmm.2023.02.003

8. Ivanov, P., Performance Evaluation of a Low-Cost Semitransparent 3D-Printed Antenna // Electronics. 2023. Vol. 12, No. 5. – P. 1035. DOI: 10.3390/electronics12051035

9. Abid, N., Creep Properties of a 3D-Printed Sierpinski Carpet-Based Fractal Composite // Fractal and Fractional. 2023. Vol. 7, No. 4. – P. 216. DOI: 10.3390/fractalfract7040216

10. A Comprehensive Review of 3D Printed Fractal Antennas // IRJMETS. 2023. Vol. 5, No. 10. P. 145-156. URL: https://irjmets.com/paperdetail.php?paper_id=3344

11. Nuraliev F. M., Narzulloev O. M., Nurimbetov B. T., 3D fraktal tuzilishli obyektlarni geometrik modellashtirish usullari // Al-Xorazmiy avlodlari. 2023. № 2(24). – P. 242-246.

12. Nuraliev F.M., Nabiev I.Sh., Nurimbetov B.T., Raxmatullayeva M.F., Uch o‘lchovli Serpinski uchburchagini R-funksiya yordamida modellashtirish // Al-Xorazmiy avlodlari. – 2024. № 2(28). – P. 219-222.

13. Venneri, F., Costanzo, S., & Borgia, A. (2024). Fractal Metasurfaces and Antennas: An Overview for Advanced Applications in Wireless Communications. Applied Sciences, 14(7), 2843. https://doi.org/10.3390/app14072843

14. Raj A., Mandal D. Design and Analysis of Sierpinski Fractal Antennas for Millimeter‐Wave 5G and Ground‐Based Radio Navigation Applications //Transactions on Emerging Telecommunications Technologies. – 2024. – Т. 35. – №. 11. – С. e70001.

15. Aravindraj E., Bibi R., Nagarajan G. A Hybrid Koch Embedded Sierpinski Fractal Antenna for Uwb & 5g Applications. – 2024.

16. Vallappil, A.K.; Khawaja, B.A.; Rahim, M.K.A.; Uzair, M.; Jamil, M.; Awais, Q. Minkowski–Sierpinski Fractal Structure-Inspired 2 × 2 Antenna Array for Use in Next-Generation Wireless Systems. Fractal Fract. 2023, 7, 158. https://doi.org/10.3390/fractalfract7020158

17. Sidhu A. K., Sivia J. S. Design of wideband fractal MIMO antenna using Minkowski and Koch hybrid curves on half octagonal radiating patch with high isolation and gain for 5G applications //Advanced Electromagnetics. – 2023. – Т. 12. – №. 1. – С. 58-69.

18. Benkhadda, O.; Saih, M.; Ahmad, S.; Al-Gburi, A.J.A.; Zakaria, Z.; Chaji, K.; Reha, A. A Miniaturized Tri-Wideband Sierpinski Hexagonal-Shaped Fractal Antenna for Wireless Communication Applications. Fractal Fract. 2023, 7, 115. https://doi.org/10.3390/fractalfract7020115

19. Haouam I., Beladgham M., Bendijallali I. R. Antenna design based on fractal geometry compact for several application on 33Ghz and 35 Ghz //Przegląd Elektrotechniczny. – 2024. – Т. 100.

Downloads

Published

2025-12-22

How to Cite

R-FUNKTSIYALAR VA ITERATSION FUNKSIYALAR TIZIMI ASOSIDA KUB-TSILINDR KOMPOZITSIYASIDAN HOSIL BOʻLGAN 3D FRAKTAL STRUKTURALARNI GEOMETRIK MODELLASHTIRISH. (2025). DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 3(6), 117-121. https://dtai.tsue.uz/index.php/dtai/article/view/v3i616