KUTUBXONA TIZIMLARIDA FOYDALANUVCHILARGA AXBOROT EHTIYOJLARIGA KO‘RA RESURSLARNI TAVSIYA ETISH
Keywords:
kutubxona tizimi, tavsiya etish, axborot resurslari, foydalanuvchilar, axborot ehtiyojlari, kontentga asoslangan tavsiya etish, hamkorlikka asoslangan tavsiya etishAbstract
Hozirda kutubxona tizimlari jamiyatning axborotga bo‘lgan ehtiyojlarini qondirishda muhim o‘rin tutadi hamda ular katta foydalanuvchilar auditoriyasiga ega. Ushbu tizimlar katta hajmdagi qimmatli axborot resurslarini o‘z ichiga olgan bo‘lib, foydalanuvchilarga zarur adabiyotlarni topishda yordam beruvchi qidiruv xizmatlarini ham taklif etadi. Qidiruv tizimlari foydalanuvchi so‘rovlarini qayta ishlaydi va mos deb topilgan natijalarni taqdim etadi. Biroq, bu jarayon natijasida foydalanuvchilar ko‘plab ma’lumotlar orasidan o‘zlariga eng mosini tanlashda qiyinchiliklarga duch kelishadi. Shu bois, zamonaviy axborot tizimlarida sun’iy intellektga asoslangan tavsiya etish tizimlari keng qo‘llanilib, foydalanuvchiga mos obyektlarni samarali tarzda taklif etish imkonini bermoqda. Kutubxona tizimlariga bunday tavsiya etish tizimi vositalarini joriy etish orqali foydalanuvchilarning axborot ehtiyojlarini aniqlash va ularga axborot ehtiyojiga ko‘ra resurslarni taqdim etish mumkin. Ushbu maqolada tavsiya etish tizimlari asosida foydalanuvchilarning axborot ehtiyojlarini aniqlash va resurslarni taqdim etishning nazariy asoslari hamda amaliy yondashuvlari tahlil qilinadi.
References
1. Li H., Gu Y., Koul S. A review of digital library book recommendation models // SSRN Electronic Journal. – 2015. – P. 1–15.
2. Bekkamov F., Rustamov A., Recommender systems: an overview. // Scientific journal “Scientific reports of Bukhara state university”, №3(85), Bukhara - 2021. –P. 2-12
3. Rosidah L., Dellia P. Library Book Recommendation System Using Content-Based Filtering // Internet of Things and Artificial Intelligence Journal (IOTA). – 2024. – Vol. 4, №1. – P. 42–65
4. Beierle F., Aizawa A., Collins A., Bee J. Choice overload and recommendation effectiveness in related-article recommendations // International Journal on Digital Libraries. – 2019. – Vol. 20. – P. 231–246
5. Gemmis P. de, Lops P., Semeraro G., Musto C. Content-based Recommender Systems:
State of the Art and Trends // Recommender Systems Handbook: Springer, 2011. – P. 73–105
6. Bekkamov F.A., Babajanov M., Berdimurodov M.A., Using Bayesian Methods to Predict Users’ Information Needs in a Digital Library. // Proceedings of the 16th International Scientific and Practical Conference “Environment. Technology. Resources”. Volume II. Latvia – 2025. – P. 37-41
7. Bekkamov F.A., Sharifov Y.X., Extended User Profiling Approaches for Recommendation Systems. // Proceedings of the 15th International Scientific and Practical Conference “Environment. Technology. Resources”.Volume II. Bulgaria – 2024. –P. 49-54
8. Madadipouya K., Chelliah S. A literature review on recommender systems algorithms, techniques and evaluations // BRAIN: Broad Research in Artificial Intelligence and Neuroscience. – 2017. – Vol. 8, № 2. – P. 109–124
9. Bekkamov F.A., A user interest recommendation based on collaborative filtering. // “Raqamli iqtisodiyot va sun’iy intellekt texnologiyalarining jamiyat rivojlanishidagi ahamiyati” mavzusidagi xalqaro ilmiy-amaliy konferensiya. Toshkent – 2024
10. Bekkamov F., Improving User Experience in Library Systems through Recommender Technologies. // Web of Technology: Multidimensional Research Journal. -2024. –P. 179-184
11. Shi Y., Yang X. A personalized matching system for management teaching resources based on collaborative filtering algorithm // International Journal of Emerging Technologies in Learning (iJET). – 2020. – Vol. 15, No. 13. – P. 207–220.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Fayzi Bekkamov

This work is licensed under a Creative Commons Attribution 4.0 International License.







