KASALLIKLARNI TASHXISLASHDA ZARRACHALAR TO‘DASI VA INTELLEKTUAL SUV TOMCHISI ALGORITMLARIGA ASOSLANGAN GIBRID YONDASHUVDAN FOYDALANISH

Authors

  • Klicheva Firuza Gulmuratovna Qarshi Davlat Universiteti

Keywords:

zarrachalar to‘dasi, pozitsiya, intellektual suv tomchisi, tuproq, global qidiruv, gibrid yondashuv

Abstract

Ushbu maqolada ko‘p sinfli klassifikatsiya masalalarini samarali yechish uchun zarrachalar to‘dasi va intellektual suv tomchisi algoritmlarining afzalliklarini birlashtiruvchi PSO–IWD gibrid algoritmi taklif etilgan. Taklif etilgan yondashuvda PSO algoritmi global qidiruv mexanizmi sifatida yechimlar maydonini keng  ko‘lamda o‘rganib, maqbul yechimlarni aniqlaydi. IWD algoritmi yordamida esa lokal qidiruv jarayonida suv tomchilarining harakati orqali eng qisqa va samarali yo‘llar aniqlanadi hamda global qidiruvda topilgan eng yaxshi yechimlar optimallashtiriladi. Taklif etilgan PSO–IWD algoritmi yurak-qon tomir kasalliklari tashxisida qo‘llaniladigan ikki xil tanlanmada sinovdan o‘tkazildi va mos ravishda 99 % hamda 98 % klassifikatsiya aniqligiga erishildi. Olingan natijalar gibrid yondashuvning murakkab tibbiy va ko‘p sinfli klassifikatsiya masalalarini yechishda yuqori samaradorlikka ega ekanini ko‘rsatadi.

References

2. Shah-Hosseini, H. (2007)’Problem solving by intelligent water drops’, Proc. IEEE Congress on Evolutionary Computation, Swissotel The Stamford, Singapore, September, pp.3226–3231.

3. Shah-Hosseini, H. (2008)’Intelligent water drops algorithm: a new optimization method for solving the multiple knapsack problem’, Int. Journal of Intelligent Computing and Cybernetics, Vol. 1, No. 2, pp.193–212.

4. Aldeeb, B.A., Norwawi, N.M., & Al-Betar, M.A. A Survey on Intelligent Water Drop Algorithm. Bioinformatics. 2014. P. 1-11.

5. Qasem S. N. and Shamsuddin S. M., “Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis,” Applied Soft Computing Journal, vol. 11, no. 1, pp. 1427–1438, 2011.

6. Zhang Y., Wang S., and Wu L., “A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO,” Progress in Electromagnetics Research, vol. 109, pp. 325–343, 2010.

7. Pervaiz, Sobia & Ul-Qayyum, Zia & Bangyal, Waqas & Gao, Liang & Ahmad, Jamil. (2021). A systematic literature review on particle swarm optimization techniques for medical diseases detection. computational and mathematical methods in medicine. 2021. 1-10. 10.1155/2021/5990999.

8. Klicheva, F. G.. Application of particle swarm optimization algorithm in medical diagnostics.IJARSET Journal. Vol. 11, Issue 11, November 2024. ISSN: 2350-0328. http://www.ijarset.com/volume-11-issue-11.html#

9. Eshboyev E. et al. Using the RFC_PSO hybrid algorithm in sorting informative features //AIP Conference Proceedings. – AIP Publishing LLC, 2025. – Т. 3356. – №. 1. – С. 030002.

10. Klicheva, F. G., & Eshboyev, E. A. (2024). Joint use of AI methods in the diagnosis of cardiovascular diseases. In Artificial Intelligence and Information Technologies (pp. 251-256). CRC Press.

Downloads

Published

2025-12-25

How to Cite

KASALLIKLARNI TASHXISLASHDA ZARRACHALAR TO‘DASI VA INTELLEKTUAL SUV TOMCHISI ALGORITMLARIGA ASOSLANGAN GIBRID YONDASHUVDAN FOYDALANISH. (2025). DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 3(6), 159-163. https://dtai.tsue.uz/index.php/dtai/article/view/v3i624