SIMSIZ SENSOR TARMOQLARDA TUGUNLARNI ICHKI JOYLASHTIRISHDA SUN’IY NEYRON TARMOG‘ INI QO‘LLASH

Authors

  • Xaytbayev Aybek Fayzullayevich Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiylari universiteti

Keywords:

simsiz sensor tarmoq, sun’iy neyron tarmoq, QQSQK, MLP, RBF, FCNNE, tugun, signal quvvati

Abstract

Ushbu maqolada simsiz sensor tarmoq (SST) da signal quvvatini aniqlash jarayonida tugunlarni joylashtirishda aniqlikni oshiruvchi usul keltirilgan. Taklif etilayotgan usulga ko‘ra ma’ lumotlar bazasini klasterlash orqali butun maydon hududlarga bo‘linadi. Har bir mintaqa uchun qabul qilingan signal quvvatining prototipi aniqlanadi va ixtisoslashtirilgan sun’iy neyron tarmoq (SNT) faqat ushbu mintaqaga (klaster) tegishli bo‘lgan maxsus usul yordamida o‘qitiladi. Yakuniy joylashuv taxmini tanlangan SNT tomonidan taqdim etilgan koordinatalarni birlashtirish orqali olinadi. Sensor tugunlari ularning joylashishini taxmin qilish uchun faqat signal quvvati prototiplarini va SNT ning sinaptik og‘irliklarini saqlashi kerak. Ushbu yondashuv qabul qilingan signal quvvati xaritasini saqlash uchun zarur bo‘lgan xotira hajmini sezilarli darajada kamaytiradi. Ushbu maqolada turli xil SNT topologiyalari ko‘rib chiqilgan. Joylashtirish aniqligini oshirish, shuningdek o‘quv jarayonini tezlashtirishga to‘liq ulangan neyron tarmoqlardan foydalanish orqali erishildi. Taklif etilgan usul sinovdan o‘tkazildi. Oldingi va mobil sensorli tugunlardan foydalangan holda haqiqiy ichki muhitda tugunlar joylashtirishning zamonaviy yondashuvlari bilan taqqoslandi.

References

B. Placzek, “Uncertainty-dependent data collection in vehicular sensor networks,” in Computer Networks, Communications in Computer and Information Science, vol. 291, pp. 430–439, Springer, Berlin, Germany, 2012.

B. Płaczek and M. Berna´s, “Uncertainty-based information extraction in wireless sensor networks for control applications,” Ad Hoc Networks, vol. 14, pp. 106–117, 2014.

M. Holzl, R. Neumeier, and G. Ostermayer, “Localization in ¨ an industrial environment: a case study on the difficulties for positioning in a harsh environmen,” International Journal of Distributed Sensor Networks, vol. 2015, Article ID 567976, 11 pages, 2015.

H. Li, Y. Hu, and M. Zhu, “Sliding-mode and spring-relaxationlike technique for location estimation in wireless sensor networks,” International Journal of Distributed Sensor Networks, vol. 2012, Article ID 283524, 8 pages, 2012.

D. F. Larios, J. Barbancho, F. J. Molina, and C. Leon, “LIS: localization based on an intelligent distributed fuzzy system applied to a WSN,” Ad Hoc Networks, vol. 10, no. 3, pp. 604–622, 2012.

C. So-In and W. Katekaew, “Hybrid fuzzy centroid with MDVHop BAT localization algorithms in wireless sensor networks,” International Journal of Distributed Sensor Networks, vol. 2015, Article ID 894560, 18 pages, 2015.

R. Marcel ın-Jimenez, E. Rodriguez-Colina, M. Pascoe-Chalke, ´C. Moreno-Escobar, and J. L. Marzo, “Cluster-based localization method for dense WSN: a distributed balance between accuracy and complexity fixed by cluster size,” International Journal of Distributed Sensor Networks, vol. 2014, Article ID 295190, 13 pages, 2014.

H. Shen, Z. Ding, S. Dasgupta, and C. Zhao, “Multiple source localization in wireless sensor networks based on time of arrival measurement,” IEEE Transactions on Signal Processing, vol. 62, no. 8, pp. 1938–1949, 2014.

M. Bernas and B. Płaczek, “Energy aware object localization in wireless sensor network based on Wi-Fi fingerprinting,” Communications in Computer and Information Science, vol. 522, pp. 33–42, 2015.

M. Abu Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, “Machine learning in wireless sensor networks: algorithms, strategies, and applications,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1996–2018, 2014.

D. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, and B. M. Wilamowski, “Selection of proper neural network sizes and architectures: a comparative study,” IEEE Transactions on Industrial Informatics, vol. 8, no. 2, pp. 228–240, 2012.

P.-J. Chuang and Y.-J. Jiang, “Effective neural network-based node localisation scheme for wireless sensor networks,” IET Wireless Sensor Systems, vol. 4, no. 2, pp. 97–103, 2014.

S. Cai, H. Pan, Z. Gao, N. Yao, and Z. Sun, “Research of localization algorithm based on weighted Voronoi diagrams for wireless sensor network,” EURASIP Journal on Wireless Communications and Networking, vol. 2014, article 50, 2014.

T. Lv, H. Gao, X. Li, S. Yang, and L. Hanzo, “Space-time hierarchical-graph based cooperative localization in wireless sensor networks,” IEEE Transactions on Signal Processing, 2015.

B. Li, W. Cui, and B. Wang, “A robust wireless sensor network localization algorithm in mixed LOS/NLOS scenario,” Sensors, vol. 15, no. 9, pp. 23536–23553, 2015.

J. M. Pak, C. K. Ahn, Y. S. Shmaliy, and M. T. Lim, “Improving reliability of particle filter-based localization in wireless sensor networks via hybrid particle/FIR filtering,” IEEE Transactions on Industrial Informatics, vol. 11, no. 5, pp. 1089–1098, 2015.

S. Zhang, X. Liu, J. Wang, J. Cao, and G. Min, “Accurate rangefree localization for anisotropic wireless sensor networks,” ACM Transactions on Sensor Networks, vol. 11, no. 3, article 51, 2015.

L. Gui, T. Val, A. Wei, and R. Dalce, “Improvement of range-free localization technology by a novel DV-hop protocol in wireless sensor networks,” Ad Hoc Networks, vol. 24, pp. 55–73, 2015.

X. Shen, Y. Yi, W. Dong, Z. Dai, Y. Tong, and P. Hu, “Mobile nodes localization based on adaptive particle swarm optimization and modified Monte Carlo localization boxed in wireless sensor networks,” Sensor Letters, vol. 12, no. 2, pp. 313–318, 2014.

A. Payal, C. S. Rai, and B. V. R. Reddy, “Analysis of some feedforward artificial neural network training algorithms for developing localization framework in wireless sensor networks,” Wireless Personal Communications, vol. 82, no. 4, pp. 2519–2536, 2015.

M. S. Rahman, Y. Park, and K.-D. Kim, “Localization of wireless sensor network using artificial neural network,” in Proceedings of the 9th International Symposium on Communications and Information Technology (ISCIT ’09), pp. 639–642, IEEE, Icheon, Republic of Korea, September 2019.

S. Yun, J. Lee, W. Chung, E. Kim, and S. Kim, “A soft computing approach to localization in wireless sensor networks,” Expert Systems with Applications, vol. 36, no. 4, pp. 7552–7561, 2019.

M. Altini, D. Brunelli, E. Farella, and L. Benini, “Bluetooth indoor localization with multiple neural networks,” in Proceedings of the 5th International Symposium on Wireless Pervasive Computing (ISWPC ’10), pp. 295–300, IEEE, Modena, Italy, May 2010.

S. Y. M. Vaghefi and R. M. Vaghefi, “A novel multilayer neural network model for TOA-based localization in wireless sensor networks,” in Proceedings of the International Joint Conference on Neural Network (IJCNN ’11), pp. 3079–3084, San Jose, Calif, USA, August 2011.

C. So-In, S. Permpol, and K. Rujirakul, “Soft computing-based localizations in wireless sensor networks,” Pervasive and Mobile Computing, 2015.

D. Guo, Y. Zhang, Q. Xiang, and Z. Li, “Improved radio frequency identification indoor localization method via radial basis function neural network,” Mathematical Problems in Engineering, vol. 2014, Article ID 420482, 9 pages, 2014.

J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: the fuzzy c-means clustering algorithm,” Computers & Geosciences, vol. 10, no. 2-3, pp. 191–203, 2011.

H. Lichte and J. Weide, “Modeling obstacles in INET/mobility framework: motivation, integration, and performance,” in Proceedings of the 2nd International Conference on Simulation Tools and Techniques (Simutools ’09), article 80, pp. 1–11, 2009.

B. M. Wilamowski and H. Yu, “Improved computation for levenberg marquardt training,” IEEE Transactions on Neural Networks, vol. 21, no. 6, pp. 930–937, 2010.

H.J.Escalante, M.Montes, and L.E.Sucar, “Particle swarm model selection,” Journal of Machine Learning Research, vol. 10, pp. 405–440, 2019.

J. F. Kolen and T. Hutcheson, “Reducing the time complexity of the fuzzy c-means algorithm,” IEEE Transactions on FuzzySystems, vol. 10, no. 2, pp. 263–267, 2012

Downloads

Published

2025-12-28

How to Cite

SIMSIZ SENSOR TARMOQLARDA TUGUNLARNI ICHKI JOYLASHTIRISHDA SUN’IY NEYRON TARMOG‘ INI QO‘LLASH. (2025). DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 3(6), 193-204. https://dtai.tsue.uz/index.php/dtai/article/view/v3i629