KOMPYUTER TARMOQLARIDA MAXFIY MA’LUMOTLARNI AI ASOSIDAGI ANIQLASH METODLARI
Keywords:
Kompyuter tarmoqlari, axborot xavfsizligi, AI(sun’iy intellekt), mashinaviy o‘rganish, anomaliyalarni aniqlashAbstract
Mazkur maqolada, kompyuter tarmoqlarida uzatilayotgan va saqlanayotgan konfidentsial axborotlarni AI (Sun’iy intellekt) metodlari yordamida aniqlash yondashuvlari to‘g‘risida fikr yuritiladi.Hozirgi murakkab va dinamik tarmoq muhitida an’anviy yondashuvlar asosida tarmoqdagi ma’lumotlarni aniqlash yoki sizib chiqishini oldini olish yetarlicha foyda bermayotgani sababli mashinali o‘rganish va chuqur o‘rganish modellari tahlil qilinadi. Tadqiqotda klassifikatsiya va anomal holatlarni aniqlash usullarining ustunligi shuningdek ularni real tarmoq muhitida qo‘llashga doir fikr yuritiladi. Natijalar AI asosidagi metodlar kompyuter tarmoqlarida axborot xavfsizligini oshirishda muhim ahamiyatga ega ekanligini ko‘rsatadi.
References
1. M. Paracha, S. Jamil, K. Shahzad, M. Khan va A. L. Rasheed, “AI for Network Threat Detection—A Conceptual Overview.,” Electronics , pp. 13, 4611., 2024-y.
2. J. D. Vraj Shiroya, “Application of AI in Network Traffic,” Artificial Intelligence eJournal, 31-March 2025-Y.
3. A. S. ,. A. T. M Abbasi, “Deep learning for network traffic monitoring and analysis,” Computer Communications, %1-tom170, pp. 19-41, 2021.
4. M. Alom, V. Bontupalli va T. Taha, “Intrusion Detection Using Deep Belief Networks,” %1da In Proceedings of the 2015 National, USA, 2015-y 15-19 June.
5. J. M. S. S. H. Naveed Ahmed, “Network Threat Detection Using Machine/Deep
Learning in SDN-Based Platforms: A Comprehensive Analysis of State-of-the-Art Solutions, Discussion, Challenges, and Future Research Direction,” Sensors, p. 22, 2022.
6. J. H. L. M. J. K. W. J. P. S. H. J. J. T. S. Il Hwan Ji, “Artificial Intelligence-Based Anomaly Detection Technology over Encrypted Traffic: A Systematic Literature Review,” Sensors, %1-tom3, p. 898, 2024.
7. N. Sultana, N. Chilamkurti, W. Peng va R. Alhadad, “ Survey on SDN Based Network Intrusion Detection System Using Machine,” Peer-Peer Netw, pp. 493-501, 2019-y.
8. A. Aldweesh, A. Derhab va A. Emam, “Deep Learning Approaches for Anomaly-Based Intrusion Detection Systems: A Survey,,” Knowl.-Based Syst, p. 189, 2020-y.
9. K. F. T.-H. A. V. .. D. Skias, “Network Traffic Anomaly Detection via Deep Learning,” Information, p. 215, 19-May 2021-y.
10. S. S. H. ,. T. S. U. ,. M. R. S. ,. M. A. H. ,. R. M. ,. M. ,. A. M G Abdolrasol, “Artificial neural networks based optimization techniques: A review,” Electronics , p. 21, 2021.
11. M. P. ,. D. H. L. A Kim, “Application of deep learning to real-time Web intrusion detection,” IEEE Access, %1-tom8, pp. 70245-70261, 2020.
12. K. N. ,. G. P. V. ,. O. Z. ,. K. I. ,. F. K. M G Kibria, “Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks,” IEEE access, %1-tom6, 2018.
13. C. C. M. M. Biersack E, “Data traffic monitoring and analysis.,” Lecture Notes in Computer Science, %1-tom5(23), pp. 12561-12570, 2013.
14. Z. Y. C. P. Zhao S, “Network traffic classification using tri-training based on statistical flow characteristics,” IEEE, pp. 323-330, 2017.
Published
Issue
Section
License
Copyright (c) 2025 Alayev Ruhilla Habibovich, Nabiyev Xolbek Tolib o‘g‘li

This work is licensed under a Creative Commons Attribution 4.0 International License.







