SUN’IY INTELLEKTGA ASOSLANGAN ZARARLI DASTURLARNI ANIQLASH VA TAHLIL QILISH
Keywords:
kiberxavfsizlik analitikasi, raqamli kriminalistika tekshiruvi, zararli dasturlarni aniqlash va oldini olish, sun’iy intellektAbstract
Zararli dasturlar (malware) — kiberhujumchilarning eng xavfli qurollaridan biri bo‘lib, ular tobora murakkablashib, tezkor tarqalish va o‘z-o‘zini ko‘paytirish xususiyatiga ega bo‘lib bormoqda. Bundan tashqari, zamonaviy zararli dasturlar kiberjinoyatchilikning eng vayronkor shakllaridan biri hisoblanadi, chunki ular aniqlanishdan qochishi, real vaqtga yaqin raqamli
kriminalistika tekshiruvlarini deyarli imkonsiz qilishi mumkin. Murakkab yashirinish strategiyalarining ta’siri esa juda jiddiy va keng ko‘lamli bo‘lishi mumkin. Shu sababli, zararli dasturlarni o‘z vaqtida va avtonom tarzda aniqlash ularni samarali tahlil qilish uchun muhim ahamiyatga ega. Ushbu ishda zamonaviy zararli dasturlarni aniqlash uchun yangi tizimli yondashuv taklif etiladi. Ushbu yondashuv dinamik, chuqur o‘rganishga asoslangan usullarni evristik yondashuvlar bilan birlashtiradi va quyidagi beshta zamonaviy zararli dastur oilasini aniqlash hamda tasniflashga qaratilgan: reklama dasturlari (adware), radware, rootkit, SMS zararli dasturlari, ransomware. Sun’iy intellekt va kiberxavfsizlik analitikasi doirasidagi tadqiqotimiz zararli dasturlarni aniqlash, tahlil qilish va oldini olish imkoniyatlarini yaxshilab, kiberxavflarga chidamli tizimlarni yaratishga xizmat qiladi. Taklif etilgan yondashuv so‘nggi zararli dasturlarni o‘z ichiga olgan maxsus ma’lumotlar to‘plami yordamida tekshirildi. Natijalar modelning samaradorlik va tezkorlik bo‘yicha real hayot talablariga mos kelishini ko‘rsatdi. Tajriba natijalari shuni ko‘rsatadiki, xatti-harakatga asoslangan chuqur o‘rganish va evristik usullarni birlashtirish statik chuqur o‘rganish usullariga qaraganda yuqori natija beradi.
References
1. Oz, H.; Aris, A.; Levi, A.; Uluagac, A.S. A survey on ransomware: Evolution, taxonomy, and defense solutions. ACM Comput. Surv. 2022, 54, 1–37.
2. Kaspersky Security Bulletin 2022. Statistics. Available online: https://securelist.com/ksb-2022-statistics/108129/.
3. Harley Malware: New Attack on Android Devices. Available online: https://infosecwriteups.com/harley-malware-new-attack on-android-devices-ae2c599c2217
4. Malware. Available online: https://www.av-test.org/en/statistics/malware/ (accessed on 16 October 2022).
5. Mohurle, S.; Patil, M. A brief study of WannaCry threat: Ransomware attack 2017. Int. J. Adv. Res. Comput. Sci. 2017, 8, 1938–1940.
6. Kraszewski, K. SamSam and the silent battle of Atlanta. In Proceedings of the IEEE 11th International Conference on Cyber Conflict, Tallinn, Estonia, 28–31 May 2019.
7. Catak, F.O.; Yazı, A.F.; Elezaj, O.; Ahmed, J. Deep learning based Sequential model for malware analysis using Windows exe API Calls. PeerJ Comput. Sci. 2020, 6, e285.
8. Karbab, E.B.; Debbabi, M. MalDy: Portable, data-driven malware detection using natural language processing and machine learning techniques on behavioral analysis reports. Digit. Investig. 2019, 28, S77–S87.
9. Rahul; Kedia, P.; Sarangi, S.; Monika. Analysis of machine learning models for malware detection. J. Discret. Math. Sci. Cryptogr. 2020, 23, 395–407.
10. Almashhadani, A.O.; Carlin, D.; Kaiiali, M.; Sezer, S. MFMCNS: A multi-feature and multi-classifier network-based system for ransomworm detection. Comput. Secur. 2022, 121, 102860.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Elshod Haydarov

This work is licensed under a Creative Commons Attribution 4.0 International License.







