MASHINALI O‘QITISH ALGORITMLARI YORDAMIDA HUJJATLARNI TASNIFLASH USULLARI TAHLILI
Keywords:
Matn tahlili, mashinali o‘qitish, o‘qituvchili o‘qitish, o‘qituvchisiz o‘qitish, tabiiy tilni qayta ishlash, axborotlarni ajratib olishAbstract
Matnli hujjatning avtomatik tasnifi onlayn matnli ma’lumotlarning payda bo‘lganidan beri matn tahlili sohasidagi tadqiqotda ahamiyatli hisoblanadi. Raqamli kutubxonalar, elektron pochtalar, bloglar va boshqalar kabi manbalar raqamli davrda matnli hujjatlarning tez o‘sishini ta’minlaydi. Umuman olganda, matnli hujjatning toifalari ma’lumot olish, mashinani o‘qitish va tabiiy tilni qayta ishlash kabi bir qancha sohalarini o‘z ichiga oladi. Ushbu maqola matnli hujjatlar to‘plamini oldindan belgilangan toifa belgilariga tasniflash uchun ham nazorat ostida va nazoratsiz mashinali o‘qitish usullaridan foydalanadigan tadqiqotlar tahlil qilingan.
References
Joachims T., “Transductive Inference for Text Classification Using Support Vector Machines,” Proc. 16th Int’l Conf. Machine Learning (ICML ‘99), pp. 200 209, 1999.
Anne Kao and Steve Poteet, “Text Mining and Natural Language Processing: Introduction for the Special Issue”, ACM SIGKDD Explorations Newsletter - Natural language processing and text mining. Vol. 7, Issue 1, 2005. DOI: 10.1145/1089815.1089816
Ethem Alpaydin, “Introduction to Machine Learning (Adaptive Computation and Machine Learning)”, The MIT Press, 2004.
Andrew McCallum and Kamal Nigam, “A Comparison of Event Models for Naïve Bayes Text Classification”, Journal of Machine Learning Research 3, pp. 12651287. 2003.
Dennis Ramdass and Shreyes Seshasai, "Document Classification for Newspaper Articles", 6.863 Final Project, Spring 2009.
Rocchio. J, “Relevance Feedback in Information Retrieval”, In G. Salton (ed.). Computer Science and Applied Cognitive Science, The SMART System: pp.67-88, 1971.
Joachims, T, “Text Categorization With Support Vector Machines: Learning with Many Relevant Features”, In: European Conference on Machine Learning, Chemnitz, Germany 1998, pp.137-142 , 1998.
Lee Sangno, Song Jaeki and Kim Yongjin, “An Empirical Comparison Of Four Text Mining Methods”, The Journal of Computer Information Systems,Vol. 51,No.1, 2010.
Tam. V, Santoso. A, and Setiono. R, “A comparative study of centroid-based, neighborhood-based and statistical approaches for effective document categorization”, Proceedings of the 16th International Conference on Pattern Recognition, pp.235–238, 2002.
Sang-Bum Kim, Kyoung-Soo Han, Hae-Chang Rim, and Sung Hyon Myaeng, "Some Effective Techniques for Naive Bayes Text Classification", IEEE Transactions On Knowledge And Data Engineering, Vol. 18, No. 11, November 2006.
Hwee-Tou Ng, Wei-Boon Goh and Kok-Leong Low , “Feature Selection, Perceptron Learning, and a Usability Case Study for Text Categorization, In Proceedings of the 20th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, pp.67-73. 1997.
Miguel E. Ruiz and Padmini Srinivasan, “Automatic Text Categorization Using Neural Network”, In Proceedings of the 8th ASIS SIG/CR Workshop on Classification Research, pp. 59-72. 1998.
Vladimir N. Vapnik, “The Nature of Statistical Learning Theory” , Springer, NewYork. 1995.
Michal Campr and Karel Jeˇzek, “Comparing Semantic Models for Evaluating Automatic Document Summarization”, Springer Lecture Notes in Computer Science : Text, Speech, and Dialogue,Vol.9302, pp. 252-260, 2015. DOI: 10.1007/978-3-319-24033-6_29
Lin-peng Jin and Jun Dong, "Ensemble Deep Learning for Biomedical Time Series Classification", Hindawi Publishing Corporation Computational Intelligence and Neuroscience, Vol. 2016, Article ID 6212684,2016. URL: http://dx.doi.org/10.1155/2016/6212684
Hugo Larochelle and Yoshua Bengio,“ Classification using Discriminative Restricted Boltzmann Machines”, Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 2008.
Yan Yan,Xu-Cheng Yin,Sujian Li,Mingyuan Yang, and Hong-Wei Hao, “Learning Document Semantic Representation with Hybrid Deep Belief Network”, Hindawi Publishing Corporation Computational Intelligence and Neuroscience, Vol. 2015, http://dx.doi.org/10.1155/2015/650527
Yoon Kim, "Convolutional Neural Networks for Sentence Classification", 2014, URL: https://arXiv preprintarXiv:1408.5882.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Kenjayev Xamdam Bazarbayevich
This work is licensed under a Creative Commons Attribution 4.0 International License.