MASHINALI O‘QITISH USULLARI ASOSIDA HAVO SIFATI KO‘RSATKICHINI BAHOLASH

Авторы

  • Soxobiddin Axatqulov Samarqand davlat universiteti
  • Islom Yalgoshev Samarqand davlat universiteti

Ключевые слова:

Havo sifati indeksi, mayda zarrachalar, ifloslantiruvchi moddalar, mashinali o‘qitish modellari

Аннотация

Bugungi kunda dunyoda havoning ifloslanishi global muammolardan biri hisoblanadi. Bu muammoning asosiy sabablariga mamlakatlarning jadal rivojlanishi, urbanizatsiyasi, sanoatlashuv va aholi sonining ko‘payishi kabi omillar tasir qiladi. Havoning ifloslanishi inson salomatligiga shuningdek hayvonot va o‘simlik dunyosiga jiddiy ta’sir ko‘rsatadi. Havoning ifloslanishini aniqlash uchun ishlatiladigan o‘lchov havo sifati indeksi (HSI) deb ataladi. U havodagi, ifloslantiruvchilar deb ataluvchi PM2.5, PM10, O3, SO2, NH3, CO2, NO2 kabi bir nechta zararli moddalar miqdoriga asoslanadi va ifloslangan havoning inson salomatligiga qisqa muddatli ta’sirini baholaydi. Dunyodagi turli hil mamlakat va shaharlar havosi sifati indeksini bashorat qilishga bag’ishlangan ilmiy tadqiqot ishlari ko’plab tadqiqotchilar tamonidan olib borilmoqda. Ushbu ish mashinali o‘qitish modellaridan foydalangan holda Samarqand shahri uchun havo sifati indeksini baholashga bag‘ishlangan. Havo ifloslantiruvchilari va metearologik ma’ulotlar shahardaga mavuj stansiyalardan to’plangan. Ushbu ishning o‘ziga xosligi oldingi tadqiqotlarga nisbatan havo sifati indeksi va mashinaviy o‘qitish modellariga ta’sir qiluvchi o‘ziga xos xususiyatlardan iborat.

Библиографические ссылки

World Health Organization (WHO), https://www.who.int/

United States Environmental Agency, https://www.epa.gov/

Hydrometeorology Service Agency under the Ministry of Ecology, Environment Protection and Climate Change of the Republic of Uzbekistan. https://monitoring.meteo.uz/en/

S. Akhatkulov, O.Ysupov, A. Omonov. AIP Conf. Proc. 3244, 030071,(2024). https://doi.org/10.1063/5.0241786

S.Akhatkulov et.al., Piecewise linear models in machine learning. Preprint. (2024).

A.S.Abdul Rahman, A.Y.Idris and S.A.Rahman, Math. Sci. Inf. Journal, Vol. 4, No. 1, pp 1-10, (2023). DOI: 10.24191/mij.v4i1.21889

J.Boonphun, Ch.Kaisornsawad and P.Wongchaisuwat, E3S Web of Conf. 120,03004, (2019). https://doi.org/10.1051/e3sconf/20191

N.S.Gupta et al., J.Envi.Pub.Health, Volume 2023, Article ID 4916267, 26 pages, (2023). https://doi.org/10.1155/2023/4916267

G.Ravindiran, et al., Chemosphere 336,139518, (2023). https://doi.org/10.1016/j.chemosphere.2023.139518

A.Samad et al., Atmospheric Environment 310,119987, (2023) https://doi.org/10.1016/j.atmosenv.2023.119987

Y-Ch. Liang et al., Appl.Sci.2020,10, 9151, (2020). doi:10.3390/app10249151

J.B. Ordieres, et al., Environ. Model. Softw. 20(5), 547-559 (2005). https://doi.org/10.1016/j.envsoft.2004.03.010

W. Sun, et al., Sci. Total Environ. 443, 93-103 (2013). DOI:10.1016/j.scitotenv.2012.10.070

Q. Zhou, et al., Sci. Total Environ. 496, 264-274 (2014). DOI:10.1016/j.scitotenv.2014.07.051

Загрузки

Опубликован

2025-02-28

Как цитировать

Axatqulov , S., & Yalgoshev, I. (2025). MASHINALI O‘QITISH USULLARI ASOSIDA HAVO SIFATI KO‘RSATKICHINI BAHOLASH. Цифровая трансформация и искусственный интеллект, 3(1), 213–220. извлечено от https://dtai.tsue.uz/index.php/dtai/article/view/v3i132