TA’LIM MA’LUMOTLARINI INTELLEKTUAL TAHLIL QILISH UCHUN MASHINANI O‘RGATISH ALGORITMLARINING QO’LLANILISHI

Authors

  • Erkaboy Samandarov Toshkent irrigatsiya va qishloq xoʻjaligini mexanizatsiyalash muhandislari instituti

Keywords:

Sun’iy intellekt, ta’limda ma’lumotlarni qazib olish, mashinani o’rgatish

Abstract

Ta’lim jamiyatning barcha sohalari asosini tashkil etadi. Shuning uchun, sifatli ta’limni ta’minlash har bir davlat uchun muhim ahamiyatga ega. Hozirgi kunda sifatli ta’limni kafolatlash uchun bir qancha vositalar qo‘llanilmoqda. Mashinani o‘rgatish algoritmlari hozirgi paytda ta’lim tizimiga samarali tatbiq etilayotgan sohalardan biridir. Ushbu maqolada keltirilgan har bir ilova bir nechta mashinani o‘rganish algoritmlaridan iborat bo‘lib, ta’lim sohasida mashinani o‘rgatish algoritmlarining qo‘llanilishini umumiy nuqtai nazardan ko‘rib chiqamiz. Mashinani o‘rgatish algoritmlariga tayanuvchi ilovalarning maqsadi talabaning psixologik holatini aniqlash, unda qiziqish uyg‘otgan fanni belgilash, talabaning o‘rganayotgan fan bo‘yicha bahosini bashorat qilish hamda uni sinflarga ajratishdan iborat. Har bir ilovada qo‘llanilayotgan mashinani o‘rganish algoritmlarini batafsil tahlil qilib o‘tamiz. Ushbu ilovalar moslashuvchan xususiyatga ega bo‘lib, ular ta’limning har bir bosqichida samarali qo’llanilishi mumkin. Shuningdek, ilovalarga asoslangan ta’lim platformalari ham arzon narxda yaratiladi. Maqolada ta’lim sohasida har bir mashinani o‘rgatish algoritmining samaradorligi ham muhokama qilinadi.

References

López-Meneses, E., Mellado-Moreno, P. C., Gallardo Herrerías, C., & Pelícano-Piris, N. (2025). Educational Data Mining and Predictive Modeling in the Age of Artificial Intelligence: An In-Depth Analysis of Research Dynamics. Computers, 14(2), 68. https://doi.org/10.3390/computers14020068

López-Meneses, E., López-Catalán, L., Pelícano-Piris, N., & Mellado-Moreno, P. C. (2025). Artificial Intelligence in Educational Data Mining and Human-in-the-Loop Machine Learning and Machine Teaching: Analysis of Scientific Knowledge. Applied Sciences, 15(2), 772. https://doi.org/10.3390/app15020772

Yağcı, M. (2022). Educational data mining: Prediction of students’ academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 11. https://doi.org/10.1186/s40561-022-00192-z

Yousafzai, B. K., Hayat, M., & Afzal, S. (2020). Application of machine learning and data mining in predicting the performance of intermediate and secondary education level students. Education and Information Technologies, 25(6), 4677–4697. https://doi.org/10.1007/s10639-020-10189-1

Maniyan, S., Ghousi, R., & Haeri, A. (2024). Data mining-based decision support system for educational decision makers: Extracting rules to enhance academic efficiency. Computers & Education: Artificial Intelligence, 100242. https://doi.org/10.1016/j.caeai.2024.100242

Yıldırım, H. (2024). Assessment of effective factors on student performance based on machine learning methods. Journal of Intelligent Systems: Theory and Applications, 7(2), 43–55. https://doi.org/10.38016/jista.1383998

Alalawi, K., Athauda, R., & Chiong, R. (2024). An extended learning analytics framework integrating machine learning and pedagogical approaches for student performance prediction and intervention. Education and Information Technologies, 29, 2887–2916. https://doi.org/10.1007/s10639-024-12923-5

Hussain, M. M., Akbar, S., Ale Hassan, S., Waqas Aziz, M., & Urooj, F. (2024). Prediction of Student’s Academic Performance through Data Mining Approach. Journal of Informatics and Web Engineering, 3(1), 241–251. https://doi.org/10.33093/jiwe.2024.3.1.16

Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905–971. https://doi.org/10.1007/s10639-022-11152-y

Esteban, A., Romero, C., & Zafra, A. (2021). Assignments as influential factor to improve the prediction of student performance in online courses. Applied Sciences, 11(21), 10145. https://doi.org/10.3390/app112110145

Jama Ali, M., Chesneau, C., & Muse, A. H. (2024). Examining the determinants of student academic performance in Somaliland: Estimating unobserved effects at student and school levels using multi-level logistic regression. Cogent Education, 11(1), 2436293. https://doi.org/10.1080/2331186X.2024.2436293

Pérez, M., Mejía, O., Serrano, C., Suescún Garcés, S., Mogollón Alaguna, O., & León, F. (2023). Analysis of academic performance from a binary logistic regression model. Innovaciencia, 11(1), 1–14. https://doi.org/10.15649/2346075X.3423

Ahmad, Z., & Shahzadi, E. (2018). Prediction of students’ academic performance using artificial neural network. Bulletin of Education and Research, 40(3), 157–164.

Chavez, H., Chavez Arias, B., Contreras Rosas, S., Álvarez Rodríguez, J. M., & Raymundo, C. (2023). Artificial neural network model to predict student performance using nonpersonal information. Frontiers in Education, Section Assessment, Testing and Applied Measurement, 8, 110667. https://doi.org/10.3389/feduc.2023.110667

Farhana, S. (2021). Classification of Academic Performance for University Research Evaluation by Implementing Modified Naive Bayes Algorithm. Procedia Computer Science, 194, 224–228. https://doi.org/10.1016/j.procs.2021.10.077

Thant, K. S., Thu, E. T. T., Khaing, M. M., Myint, K. L., & Tin, H. H. K. (2020). Evaluation of Student Academic Performance Using Naive Bayes Classifier. Advances in Computer and Communications, 1(1), 46–52.

Topîrceanu, A., & Grosseck, G. (2017). Decision tree learning used for the classification of student archetypes in online courses. Procedia Computer Science, 112, 51–60. https://doi.org/10.1016/j.procs.2017.08.021

Al Tameemi, G., Xue, J., Hadi, I., & Ajit, S. (2024). A Hybrid Machine Learning Approach for Predicting Student Performance Using Multi class Educational Datasets. Procedia Computer Science, 238, 888–895. https://doi.org/10.1016/j.procs.2024.06.108

Pang X., Liu T., Zuo H. Research on College Students' Mental Health Based on Logistic Regression Model //Journal of Social Science Humanities and Literature. – 2025. – Т. 8. – №. 2. – С. 20-27.

Gil M., Kim S. S., Min E. J. Machine learning models for predicting risk of depression in Korean college students: identifying family and individual factors //Frontiers in Public Health. – 2022. – Т. 10. – С. 1023010.

Mohd N., Yahya Y. A data mining approach for prediction of students' depression using logistic regression and artificial neural network //Proceedings of the 12th international conference on ubiquitous information management and communication. – 2018. – С. 1-5.

Kaya, M., & Ayhan, B. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-20. https://doi.org/10.1186/S40561-022-00192

Tan, M., & Shao, P. (2019). Modelling, prediction and classification of student academic performance using artificial neural networks. Discover Applied Sciences, 1(1), 1-10. https://doi.org/10.1007/s42452-019-0884-7

Sulika, S., Kusumawati, R., & Arif, Y. M. (2023). Classification of Students' Academic Performance Using Neural Network and C4.5 Model. International Journal of Advances in Data and Information Systems, 5(1), 1-10. https://doi.org/10.59395/ijadis.v5i1.1311

Islomov, N., & Tursunov, D. (2021). Application of Naive Bayes Algorithm for Classifying Student Subject Performance. Journal of Educational Analytics, 10(2), 45-58.

Karimova, S., & Saidov, M. (2022). Predicting Student Knowledge Levels in STEM Subjects Using Naive Bayes. International Journal of Education and AI, 5(1), 12-25.

Tadjiboev, F., & Rasulov, A. (2020). Naïve Bayes Classifier for Multi-Subject Student Assessment. Proceedings of the Central Asian Conference on Educational Technology, 102-110.

Gotardo, M.A. (2019). Using Decision Tree Algorithm to Predict Student Performance. Indian Journal of Science and Technology, 12(8), 1–8. doi:10.17485/ijst/2019/v12i5/140987

Arumugam, S., Vinodhini, G., & Chandrasekaran, R.M. (2018). Predicting Students’ Academic Performance in the University Using Meta Decision Tree Classifiers. Journal of Computer Science, 14(5), 654–662. doi:10.3844/jcssp.2018.654.662

Doctor, A.C. (2023). A Predictive Model Using Machine Learning Algorithm in Identifying Students Probability on Passing Semestral Course. arXiv preprint arXiv:2304.05565.

Downloads

Published

2025-08-04

How to Cite

Samandarov, E. (2025). TA’LIM MA’LUMOTLARINI INTELLEKTUAL TAHLIL QILISH UCHUN MASHINANI O‘RGATISH ALGORITMLARINING QO’LLANILISHI. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 3(4), 7–14. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v3i42