VEB HUJJAT KONTENTLARGA YO‘NALTIRILGAN VEB ANALITIKA MODELLARI VA ALGORITMLARI
Keywords:
veb analitika, kontent tahlili, gibrid modellar, semantik tahlil ma'lumotlar analitikasi, veb sahifa tahlili, veb trafik monitoringi, yuqori sifatli kontentni, tavsiya etish, data mining, veb sahifa interaktivligi, tahlil qilish algoritmlari, veb metrikalar, veb texnologiyalar, web scraping, Interaktiv foydalanuvchi interfeyslariAbstract
Veb-kontentlarni samarali tahlil qilish uchun moʻljallangan analitika modellari va algoritmlarini taxlili keltirilgan. Tadqiqotda zamonaviy veb-resurslarning mazmunini tuzilmasi, semantikasi va foydalanuvchi interaksiyasini baholashda anʼanaviy analitika usullarining cheklovlari hamda veb tahlil jarayonlarining to‘rtta bosqichlari koʻrib chiqilgan. Veb-kontentlarni samarali tahlil qilish uchun moʻljallangan analitika modellari va algoritmlarini taxlili keltirilgan. Tadqiqotda zamonaviy veb-resurslarning mazmunini tuzilmasi, semantikasi va foydalanuvchi interaksiyasini baholashda anʼanaviy analitika usullarining cheklovlari hamda veb tahlil jarayonlarining to‘rtta bosqichlari koʻrib chiqilgan.
References
Erin Glass. “How To Build a Website with CSS and HTML”, Published: 11, 2020, ISBN: 978-1-7358317-1-8 (ISBN10: -).
Poston Howard. “Mapping the OWASP Top Ten to Blockchain.” Procedia Computer Science 177 (2020): 613–617.
Pillay Rishalin. Learn Penetration Testing: Understand the art of penetration testing and develop your white hat hacker skills. Packt Publishing Ltd, 2019.
Meyer Christopher and Jörg Schwenk. “Lessons Learned From Previous SSL/TLS Attacks-A Brief Chronology Of Attacks And Weaknesses.” IACR Cryptol. ePrint Arch. 2013 (2013): 49.
Yan Jeff and Ahmad Salah El Ahmad. “Breaking visual captchas with naive pattern recognition algorithms.” In Twenty-Third Annual Computer Security Applications Conference (ACSAC2007), pp. 279–291. IEEE, 2007.
Raximov N. et al. Development of architecture of intellectual information system supporting decision-making for health of sportsmen //2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). – IEEE, 2022. – С. 1-4.
Rahimov N., Dilmurod K. The application of multiple linear regression algorithm and python for crop yield prediction in agriculture //Harvard educational and scientific review. – 2022. – Т. 2. – №. 1.
Примкулов О. Д. У., Тожиев М. Р., Хасанов Д. Р. У. Компьютерное зрение как средство извлечения информации из видеоряда //Academic research in educational sciences. – 2021. – Т. 2. – №. 9. – С. 582-585.
Mo’minov B., Egamberdiyev E. Technical sciences a neuro-fuzzy model for predicting successful passing of entrance exams of applicants to higher education //Central Asian J. Educ. Comput. Sci. – 2023. – Т. 2. – №. 2. – С. 6-13.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muminov Bahodir Boltayevich, Husanov Sherzod Abdimannonovich

This work is licensed under a Creative Commons Attribution 4.0 International License.