OG‘ZAKI MULOQOT TIZIMLARINI ISHLAB CHIQISH UCHUN NORAVSHAN QOIDALARGA ASOSLANGAN EVOLYUTSION KLASSIFIKATORLARNING QO‘LLANILISHI
Ключевые слова:
Og‘zaki muloqot tizimlari, rivojlanayotgan klassifikatorlar, og‘zaki nutqni odam va mashinaning o‘zaro ta’siri, statistik metodologiyalar, muloqot boshqaruviАннотация
Ushbu maqolada og‘zaki muloqot tizimlari uchun muloqot boshqaruvlarini ishlab chiqish uchun rivojlanayotgan noravshan qoidalarga asoslangan (FRB) tasniflagichlar bo‘yicha statistik yondashuvi taklif etiladi. Taklif asosida ishlab chiqilgan muloqot boshqaruvlari FRB tasniflash jarayonini qo‘llash orqali avtomatik ravishda olinadigan dinamik noravshan qoidalar to‘plamini hisobga olgan holda keyingi tizim harakatini tanlaydi. Bizning nazariya foydalanuvchi tomonidan to‘liq muloqot tarixi davomida taqdim etilgan ma‘lumotlarni jamlaganda muammolarga olib kelmasdan, shuningdek, tanib olish va tushunish modullari tomonidan taqdim etilgan ishonch choralarini hisobga olishning asosiy ustunligiga ega. EFS dan foydalanish, real vaqt rejimida oqim ma’lumotlarini on-layn rejimda qayta ishlash imkonini beradi, shu bilan muloqot tizimi uning foydalanuvchilari bilan o‘zaro ta’siri asosida dialog modelining tuzilishi va ishlashini dinamik ravishda rivojlantiradi. Shuningdek, biz temir yo‘l ma’lumotlarini taqdim etadigan muloqot tizimini ishlab chiqish bo‘yicha taklifimizni qo‘llashni tasvirlaymiz.
Библиографические ссылки
Kaxorov А.А, Yodgorova Д.М., Xo‘jakulov Т.А., Bozorova Z.S.: Tabiiy tilni qayta ishlash model va algoritmlari. Мухаммад ал-Хоразмий авлодлари, № 3 (21), сентябр 2022
A.A.Kakhorov, D.M.Yodgorova, T.A.Khujakulov, Z.S.Bozorova.: Methods of using natural language processing for digital profile. Bulletin of TUIT: Management and Communication Technologies 2023.Vol-2(8)
Pieraccini, R.: The Voice in the Machine: Building Computers that Understand Speech. The MIT Press (2012)
Vipperla, R., Wolters, M., Renals, S.: Spoken dialogue interfaces for older people. In: Advances in Home Care Technologies, pp. 118–137. IOS Press (2012)
Schatzmann, J., Weilhammer, K., Stuttle, M., Young, S.: A Survey of Statistical User Simulation Techniques for Reinforcement-Learning of Dialogue Management Strategies. Knowledge Engineering Review 21(2), 97–126 (2006)
Griol, D., Hurtado, L., Segarra, E., Sanchis, E.: A Statistical Approach to Spoken Dialog Systems Design and Evaluation. Speech Communication 50(8-9), 666–682 (2008)
Wilks, Y., Catizone, R., Worgan, S., Turunen, M.: Some background on dialogue management and conversational speech for dialogue systems. Computer Speech and Language 25, 128–139 (2011)
Angelov, P., Zhou, X.: Evolving fuzzy-rule-based classifiers from data streams. IEEE T. Fuzzy Systems 16(6), 1462–1475 (2008)
Levin, E., Pieraccini, R., Eckert, W.: A stochastic model of human-machine interaction for learning dialog strategies. IEEE T. Speech and Audio Processing 8(1), 11–23 (2000)
Young, S., Schatzmann, J., Weilhammer, K., Ye, H.: The Hidden Information State Approach to Dialogue Management. In: Proc. ICASSP 2007, pp. 149–152 (2007)
Planells, J., Hurtado, L., Sanchis, E., Segarra, E.: An Online Generated Transducer to Increase Dialog Manager Coverage. In: Proc. Interspeech 2012 (2012)
Meng, H.H., Wai, C., Pieraccini, R.: The Use of Belief Networks for Mixed-Initiative Dialog Modeling. IEEE T. Speech and Audio Processing 11(6), 757–773 (2003)
Young, S.: The Statistical Approach to the Design of Spoken Dialogue Systems. Technical report, Cambridge University Engineering Department (2002)
Angelov, P., Filev, D.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE T. Systems, Man and Cybernetics 34(1), 484–498 (2004)
Minsky, M.: A Framework for Representing Knowledge. In: The Psychology of Computer Vision, pp. 211–277. McGraw-Hill (1975)
Segarra, E., Hurtado, L.: Construction of Language Models using Morfic Generator Grammatical Inference MGGI Methodology. In: Proc. Eurospeech 1997, pp. 2695–2698 (1997)
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2023 Kaxorov Azamat Abdulloyevich
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.