ЭЛЕКТРОМИОГРАФИЯ СИГНАЛИНИНГ ФАОЛ ПОТЕНЦИАЛ ЧЕГАРАСИНИ АНИҚЛАШДА ЯНГИЧА ЁНДАШУВ
Ключевые слова:
электромиография, биосигналлар, актив чегара, частота, стандарт оғиш, ўртача хатоликАннотация
Ушбу мақолада электромиография сигналининг актив потенциал қисмини аниқлашда янгича усул келтирилган ва бошқа мавжуд алгоритмлар билан солиштирилган. Усулда электромиография сигналининг стандарт оғишини инобатга олинган. Ушбу усул ёрдамида келажакда инсон-машина тизимларини яратишда тезкорликни ва аниқликни таъминлашда фойдаланилади.
Библиографические ссылки
A. Turgunov, K. Zohirov, R. Nasimov and S. Mirzakhalilov, "Comparative Analysis of the Results of EMG Signal Classification Based on Machine Learning Algorithms," 2021 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2021, pp. 1-4, doi: 10.1109/ICISCT52966.2021.9670108.
A. Turgunov, K. Zohirov, S. Rustamov and B. Muhtorov, "Using Different Features of Signal in EMG Signal Classification," 2020 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2020, pp. 1-5, doi: 10.1109/ICISCT50599.2020.9351392.
A. Ekelem. Control Methods for Improving Mobility for Persons with Lower Limb Paralysis. Dissertation for the degree of Doctor of Philosophy in Mechanical Engineering September 30, 2018, Nashville, Tennessee. ProQuest Number:13877286. pp.156.
Abdusalomov AB, Nasimov R, Nasimova N, Muminov B, Whangbo TK. Evaluating Synthetic Medical Images Using Artificial Intelligence with the GAN Algorithm. Sensors (Basel). 2023;23(7):3440. Published 2023 Mar 24. doi:10.3390/s23073440
R. Nasimov, N. Nasimova and B. Muminov, "Hybrid Method for Evaluating Feature Importance for Predicting Chronic Heart Diseases," 2022 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2022, pp. 1-4, doi: 10.1109/ICISCT55600.2022.10146969.
R. Boostani and M. H. Moradi, Evaluation of the forearm EMG signal features for the control of a prosthetic hand," Physiological Measurement, vol. 24, pp. 309-319, 2003.
K. Zohirov, "Classification Of Some Sensitive Motion Of Fingers To Create Modern Biointerface," 2022 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2022, pp. 1-4, doi: 10.1109/ICISCT55600.2022.10146846.
H. P. da Silva, A. Fred, and R. Martins, "Biosignals for Everyone," in IEEE Pervasive Computing, vol. 13, no. 4, pp. 64-71, Oct.-Dec. 2014, doi: 10.1109/MPRV.2014.61.
C. Scuro, P. F. Sciammarella, F. Lamonaca, R. S. Olivito, and D. L. Carni, "IoT for structural health monitoring," in IEEE Instrumentation & Measurement Magazine, vol. 21, no. 6, pp. 4-14, December 2018, doi: 10.1109/MIM.2018.8573586.
Palumbo A, Vizza P, Calabrese B, Ielpo N. Biopotential Signal Monitoring Systems in Rehabilitation: A Review. Sensors (Basel). 2021 Oct 28;21(21):7172. doi: 10.3390/s21217172. PMID: 34770477; PMCID: PMC8587479.
A. Feltane. Time-frequency-based methods for non-stationary signal analysis with application to EEG signals. A dissertation for the degree of Doctor of Philosophy in Electrical Engineering, University of Rhode Island 2016. pp. 149. ProQuest Number:10102283.
Swapna M, Viswanadhula UM, Aluvalu R, Vardharajan V, Kotecha K. Bio-Signals in Medical Applications and Challenges Using Artificial Intelligence. Journal of Sensor and Actuator Networks. 2022; 11(1):17. https://doi.org/10.3390/jsan11010017
A. Phinyomark, C. Limsakul, and P. Phukpattaranont, A Novel Feature Extraction for Robust EMG Pattern Recognition," Journal of Computing, vol. 1, no. 1, pp. 71-80, 2009.
Omar Abdul-hadi. Machine Learning Applications to Robot Control. A dissertation for the degree of Doctor of Philosophy in Engineering - Mechanical Engineering, University of California, Berkeley, 2018. pp. 99. ProQuest Number:10817183.
A. Phinyomark, P. Phukpattaranont, and C. Limsakul, “Feature reduction and selection for EMG signal classification", Expert Systems With Applications, vol. 39, pp. 7420-7431, 2012.
B. Hudgins, P. Parker, and R. N. Scott, A New Strategy for Multifunction Myoelectric Control," IEEE Transactions on Biomedical Engineering, vol. 40, no. 1, pp. 82-94, 1993.
H. Fayed and A. Atiya, “A Novel Template Reduction Approach for the Nearest Neighbor Method”, IEEE Trans on Neural Network, Vol. 20, No. 5, May 2009. pp:890
Solnik, S., Rider, P., Steinweg, K., DeVita, P., and Hortobágyi, T. Teager–Kaiser energy operator signal conditioning improves EMG onset detection. European journal of applied physiology 110, 3 (2010), 489–498.
Phinyomark, A.; Scheme, E. EMG pattern recognition in the era of big data and deep learning. Big Data Cogn. Comput. 2018, pp. 2-21.
Mateusz Magda. EMG onset detection – development and comparison of algorithms. Thesis, Wrocław University of Technology, pp. 48. 2015.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2023 Зоҳиров Қудратжон Рафиқович
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.