MASOFADAN ZONDLANGAN SENTINEL-2 PLATFORMASI TASVIRLARINI TASNIFLASH ALGORITMLARI
Ключевые слова:
masofadan zondlash, sentinel-2 tasvirlari, mashinali o‘qitish, tasniflash, kmeans, maximum likelihood, minimum distance, random forest, geoinformation systems, land-use classificationАннотация
Yangi avlod masofadan zondlash texnologiyalari va missiyalari orqali yerni yuzini kuzatish yordamida atrof-muhit monitoringi, global harorat o‘zgarishi, yerdan foydalanish kabi muhim masalalarni o‘rganish mumkin. Bu borada Yevropa Ittifoqining Compernicus tashkiloti tomonidan ishga tushirilgan Sentinel platformalaridan tadqiqotlar va ochiq turdagi ilovalarni ishlab chiqishda foydalanish ancha samarali hisoblanadi. Ushbu maqolada Sentinel-2 platformasidan olingan tasvirlarga ishlov berish bosqichlari, mazkur platforma ma’lumotlaridan foydalanib, yerdan foydalanishni tasniflash uchun mashinali o‘qitish algoritmlari, jumladan, K-means, maksimal ehtimollik, minimal masofa hamda tasodifiy o‘rmon tasniflash algoritmlari natijalarining solishtirma tahlili keltirilgan. Algoritmlarni baholash uchun True Positive (TP), True Negative (TN), Kappa indeksi va Precision kabi ko‘rsatkichlari qo‘llanilgan. Ushbu maqolada Xorazm va Andjion viloyati qishloq xo‘jaligi uchun mo‘ljallangan hududlari tadqiqot obyekti sifatida qaralgan va ekinlar uchun ajratilgan maydonlarning tasniflash natijalari keltirilgan.
Библиографические ссылки
WorldBank Report. “United Nations Population Division. World Population Prospects”. 2023 Revision. https://data.worldbank.org/indicator/SP.POP.TOTL .
FAO Report. “Land Use. In: FAOSTAT”. Rome. 2023.
T. Kuchkorov, S. Urmanov, M. Kuvvatova and I. Anvarov, "Satellite image formation and preprocessing methods," 2020 International Conference on Information Science and Com-munications Technologies (ICISCT), Tashkent, Uzbekistan, 2020, pp. 1-4, doi: 10.1109/ICISCT50599.2020.9351456.
ESA. Sentinel-2 Missions-Sentinel Online; ESA: Paris, France, 2014.
F. Spoto et al., "Overview Of Sentinel-2," 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012, pp. 1707-1710, doi: 10.1109/IGARSS.2012.6351195.
Marmanis, D., Schindler, K., Wegner, J.D., Galliani, S., Datcu, M., Stilla, U., “Classification with an edge: Improving semantic image segmentation with boundary detection”. ISPRS J. Photogramm. Remote Sens. 2018. (pp. 135, 158–172).
J. Zhao, Y. Zhong, H. Shu, and L. Zhang. “High-Resolution Image Classification Integrating Spectral-Spatial-Location Cues by Conditional Random Fields,” IEEE Transactions on Image Processing, vol. 25, no. 9 (pp. 4033–4045), 2016.
Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M.E., García-Santos, G., Fernandes, R., Berger, M. “Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land”. Remote Sens. Environ. 2012, 120 (pp. 91-101).
Youguo Li, Haiyan Wu. “A Clustering Method Based on K-Means Algorithm”. Physics Procedia 25:1104-1109. 2012. DOI: 10.1016/j.phpro.2012.03.206.
A.A.Jamali, A.Behnam, A.A.Almodaresi, S.He, A.Jaafari. “Exploring factors influencing urban sprawl and land-use changes analysis using systematic points and random forest classification”. Environment Development and Sustainability 26(5). 2023.
DOI: 10.1007/s10668-023-03633-y.
Shreesty Pal, S K Pandey, Reena Nair, Sh.K.Sharma. “Land use and land cover classification of Jabalpur district using minimum distance classifier”. The Pharma Innovation Journal 2022; SP-11(11): 1161-1163.
Fahrul Agus, A Prafanto, Zanu Alfandi Kamil. “Detecting land use land cover using supervised maximum likelihood algorithm on spatiotemporal imagery in Samarinda, Indonesia”. IOP Conference Series Earth and Environmental Science 1266(1):012085. December 2023. DOI 10.1088/1755-1315/1266/1/012085.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2024 Temurbek Kuchkorov, Umida Ismoilova, Temur Ochilov, Ibrohim Ahmadjonov
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.