ANSAMBL ALGORITMI YORDAMIDA FISHING URL MANZILLARINI ANIQLASH
Ключевые слова:
fishing URL, neyron to’ri, tasniflash, NLP, softmax, yashirin qatlamАннотация
So'nggi yillarda fishing hujumlari jismoniy shaxslar va tashkilotlar uchun tobora jiddiy muammoga aylandi. Ushbu kiber hujumda jabrlanuvchi aldanib, Internet tarmog’iga kirish uchun zararli dasturni yuklab oladigan yoki jabrlanuvchini maxfiy ma'lumotlarni so'raygan veb-sahifalarga yo'naltiradigan zararli URL manziliga kirishadi. Ushbu maqolada fishing URL manzillarini aniqlash uchun ansambl usulidan, xususan so'zlarni o'rnatish bilan chuqur konvolyutsion neyron to’ridan (KNT) va tabiiy tilni qayta ishlash usullaridan foydalanish usuli taklif qilingan. Hisoblash eksperimentlar natijasida taklif etilgan ansambl modeli fishing URL manzillarini 98,96% aniqlikni tanib olish erishilgan, hamda model fishing hujumlariga qarshi samarali ekanligini ko'rsatadi.
Библиографические ссылки
Tonguing Zhang, Winked Lee, Intrusion detection in wireless ad-hoc networks, in: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, 2000, pp. 275–283.
Tuan A. Tang, Miami Lofty, McLennan Des, Shed Ali Raze Sadie, Gogh Moonie, Deep recurrent neural network for intrusion detection based networks, in: 2018 4th IEEE Conference on Network Softwarization and Workshops, IEEE, 2018, pp. 202–206.
Stefano Zanier, Sergio M. Savers, Unsupervised learning techniques for an intrusion detection system, in: Proceedings of the 2004 ACM Symposium on Applied Computing, 2004, pp. 412–419.
A. Ali, Selah Ahmed, Tamer Ramadan, Multilayer perceptions networks for an intelligent adaptive intrusion detection system, International Journal of Computer
Science and Network Security 10 (2) (2010).
Gazed Karats, Ongar Kory, Neural network based intrusion detection systems with different training functions, in: 2018 6th International Symposium on Digital Forensic and Security (ISDFS), IEEE, 2018, pp. 1–6.
Chua long Yin, Jialing Fee, A deep learning approach for intrusion detection using recurrent neural networks, IEEE Access 5 (2017) 21954–21961.
Mohamed Amine Farrago, Malarias Lindros, Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study, J. Inf. Secur. Appl. 50 (2020) 102419.
Horne, Kurt, Maxwell, Hilbert White, Multilayer feed forward networks are universal approximates, Neural Network. 2 (5) (1989) 359–366.
Geoffrey E. Hinton, R. Roslyn, Reducing the dimensionality of data with neural networks, Science 313 (5786) (2006) 504–507.
G. Xiang, J. Hong, C.P. Rose, L. Cranor, Cantina+ a feature-rich machine learning framework for detecting phishing web sites, ACM Trans. Inf. Syst. Secur. 14 (2) (2011) 1–28.
H. Zuhair, A. Selamat, M. Salleh, The effect of feature selection on phish website detection: an empirical study on robust feature subset selection for effective classification, Int. J. Adv. Comput. Sci. Appl. 6 (10) (2016) 221–232.
O. Kaynar, A.G. Yüksek, Y. Gormez, ¨ Y.E. Is¸ik, Intrusion detection with autoencoder based deep learning machine, in: 2017 25th Signal Processing and Communications Applications Conference (SIU), IEEE, 2017, May, pp. 1–4.
K. Alrawashdeh, C. Purdy, Toward an online anomaly intrusion detection system based on deep learning, in: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE, 2016, December, pp. 195–200.
S. Ding, G. Wang, Research on intrusion detection technology based on deep learning, in: 2017 3rd IEEE International Conference on Computer and Communications (ICCC), IEEE, 2017, December, pp. 1474–1478.
A.K. Jain, B.B. Gupta, A machine learning based approach for phishing detection using hyperlinks information, J. Ambient Intell. Hum. Comput. 10 (5) (2019) 2015–2028.
A.K. Jain, B.B. Gupta, PHISH-SAFE: URL features-based phishing detection system using machine learning, in: Cyber Security, Springer, Singapore, 2018, pp. 467–474.
O.K. Sahingoz, E. Buber, O. Demir, B. Diri, Machine learning based phishing detection from URLs, Expert Syst. Appl. 117 (2019) 345–357.
K.L. Chiew, C.L. Tan, K. Wong, K.S. Yong, W.K. Tiong, A new hybrid ensemble feature selection framework for machine learning-based phishing detection system, Inf. Sci. 484 (2019) 153–166.
F. Itoo, S. Singh, Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection, Int. J. Inf. Technol. 13 (4) (2021) 1503–1511.
Ma TM, Yamamori K, Thida A. A Comparative Approach to Naïve Bayes Classifier and Support Vector Machine for Email Spam Classification. In: 2020 IEEE 9th Global Conference on Consumer Electronics, GCCE 2020; Oct. 2020. p. 324–6.
Halgaˇs L, Agrafiotis I, Nurse JRC. Catching the Phish: detecting Phishing Attacks Using Recurrent Neural Networks (RNNs). Lecture Notes Computer Science 2020;11897:219–33.
Gibson S, Issac B, Zhang L, Jacob SM. Detecting spam email with machine learning optimized with bio-inspired metaheuristic algorithms. IEEE Access 2020;8:187914–32.
Mohammad RMA. A lifelong spam emails classification model. Applied Comput Informatics Jan. 2024;20(1–2):35–54.
Kumar N, Sonowal S. Email spam detection using machine learning algorithms. In: 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE; Jul. 2020. p. 108–13.
Hijawi W, Faris H, Alqatawna J, Al-Zoubi AM, Aljarah I. Improving email spam detection using content based feature engineering approach. In: 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT). IEEE; Oct. 2017. p. 1–6.
Arif MH, Li J, Iqbal M, Liu K. Sentiment analysis and spam detection in short informal text using learning classifier systems. Soft comput Nov. 2018;22(21): 7281–91.
Kumar A, Chatterjee JM, Díaz VG. A novel hybrid approach of SVM combined with NLP and probabilistic neural network for email phishing. International Journal of Electrical and Computer Engineering (IJECE) Feb. 2020;10(1):486.
Fang Y, Zhang C, Huang C, Liu L, Yang Y. Phishing email detection using improved RCNN model with multilevel vectors and attention mechanism. IEEE Access 2019;7:56329–40.
Lee J, Tang F, Ye P, Abbasi F, Hay P, Divakaran DM. D-Fence: a flexible, efficient, and comprehensive phishing email detection system. In: 2021 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE; Sep. 2021. p. 578–97.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2024 Oxundadayev Ulug‘bek Raximjon o‘g‘li, Baxritdinov Farrux Zafar o‘g‘li, Xudaybergenov Qabul Qadirbergenovich
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.