RANDOM FOREST ALGORITMI YORDAMIDA BANK SOHASIDA FIRIBGARLIKNI ANIQLASH

Авторы

  • Ilxomjon Abduraximov Toshkent davlat iqtisodiyot universiteti

Ключевые слова:

Random Forest tasnifi modeli, Aniqlik va aniq ko‘rsatkich, Qabul qiluvchi operatsion xususiyat, F1-skor va qaytaruvchanlik, Mashinasozlik, Chalkashliklar matritsasi, Kredit karta va shaxsiy ma’lumotlar, Moliyaviy yo‘qotishlarni kamaytirish

Аннотация

Kredit karta firibgarligi butun dunyo bo‘ylab moliyaviy institutlar va iste’molchilar uchun jiddiy tahdid hisoblanadi. Ushbu masalani hal qilish uchun ushbu loyiha mashinasozlik (machine learning) usullaridan, xususan RandomForest Classifier modelidan foydalanib, firibgarlik bilan bog‘liq tranzaksiyalarni aniqlashni maqsad qilgan. Ma'lumotlar to‘plami Kaggle platformasidan olingan bo‘lib, tranzaksiya tafsilotlari, jumladan, tranzaksiya summalari va firibgarlik yoki sof tranzaksiyalarni ko‘rsatib beradigan belgilardan iboratdir. Loyiha ma’lumotlarni tahlil qilish va vizuallashtirishdan boshlanadi, bu esa ma’lumotlar to‘plamining xususiyatlarini aniqlashga yordam beradi. Tasniflash chizmalari va korrelyatsiya matritsalari kabi turli ma'lumotlar vizuallashtirish texnikalaridan foydalanib tushunarli naqshlar aniqlanadi.

Библиографические ссылки

Muminov B. B., Karimov U. U., Bekmurodov U. B. Models of integration of information systems in higher education institutions //2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT). – IEEE, 2020. – С. 1-5.

Ne’matullayev N. (2022). “Sun’iy intellektning xalqaro savdoga ta’siri”. Economics and Innovative Technologies, 2022-yil, № 3.

Davis, M. (2018). "Automated Customer Service Technologies". Technology Review, 7(2), 80-93.

Thompson, B. (2022). "The Future of Sun’iy intellektin Financial Services". Financial Technology Journal, 10(5), 212-225.

Kaplan, A. M., & Haenlein, M. (2020). Artificial Intelligence and Consumer Behavior. Journal of Business Research.

Agrawal, A., Gans, J., & Goldfarb, A. (2019). Prediction Machines: The Simple Economics of Artificial Intelligence. Cambridge, MA: Harvard Business Review Press.

Brynjolfsson, E., & McAfee, A. (2017). The Business of AI: How Companies Can Leverage Artificial Intelligence for Competitive Advantage. Harvard Business Review.

Davenport, T. H., & Ronanki, R. (2018). Artificial Intelligence for the Real World. MIT Sloan Management Review, 59(1), 107-116. 5. Ransbotham, S., & Kiron, D. (2021). Expanding AI’s Impact with Organizational Learning. MIT Sloan Management Review, 62(3), 1-14.

M. Bahodir, E. Elyor, IMAGE DATA CLUSTERING BASED ON THE VGG16 MODEL AND THE K-MEANS ALGORITHM // Universum: технические науки 6 (1 (130)), 23-30

Загрузки

Опубликован

2025-04-28

Как цитировать

Abduraximov , I. (2025). RANDOM FOREST ALGORITMI YORDAMIDA BANK SOHASIDA FIRIBGARLIKNI ANIQLASH. Цифровая трансформация и искусственный интеллект, 3(2), 124–128. извлечено от https://dtai.tsue.uz/index.php/dtai/article/view/v3i219