SHAXSNI OVOZI ORQALI TANIB OLISH MASALASIDA NEYROMORFIK TEXNOLOGIYALARNI QO’LLASH AFZALLIKLARI

Авторы

  • Paraxat Nurimov Toshkent irrigatsiya va qishloq xoʻjaligi mexanizatsiyalash

Ключевые слова:

ovoz signali, shaxsni tanib olish, neyromorfik texnologiyalar, mfcc, recognition, SNN

Аннотация

Hozirgi kunda shaxsni aniqlash va autentifikatsiyalash tizimlari uchun biometrik texnologiyalar, ayniqsa, ovoz asosidagi identifikatsiya usullari katta ahamiyat kasb etmoqda. An’anaviy algoritmlarga qaraganda neyromorfik texnologiyalar inson miyasi ishlash prinsiplariga yaqinlashgani bois, ularning aniqlik darajasi, ishlash tezligi va energiya samaradorligi yuqori bo‘lishi mumkin. Mazkur tadqiqot ishida shaxsni ovozi orqali tanib olish uchun neyromorfik texnologiyalardan foydalanish imkoniyatlari tahlil qilinadi. Eksperiment natijalariga ko’ra, SNN asosida ishlab chiqilgan modelning samaradorligi, aniqligi va energiya tejamkorligi baholanadi.

Библиографические ссылки

Gerstner, W., & Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press.

Pfeiffer, M., & Pfeil, T. (2018). Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in

Neuroscience, 12, 774.

Diehl, P. U., & Cook, M. (2015). Unsupervised Learning of Digit Recognition Using Spike-Timing-Dependent Plasticity. Frontiers in Computational Neuroscience, 9, 99.

Hunsberger, E., & Eliasmith, C. (2015). Spiking Deep Networks with LIF Neurons. arXiv preprint arXiv:1510.08829.

Fang, H., Shrestha, S. B., Zhao, Y., & Roy, K. (2021). Exploiting Neuron and Synapse Sparsity in Spiking Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 32(2), 280-294.

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., ... & Esser, S. K. (2017). A Low Power, Fully Event-Based Gesture Recognition System. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

VoxCeleb Dataset – https://www.robots.ox.ac.uk/~vgg/data/voxceleb/

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., & Liu, S.-C. (2017). Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification. Frontiers in Neuroscience, 11, 682.

SpykeTorch Documentation – https://github.com/miladmozafari/SpykeTorch

Izhikevich, E. M. (2003). Simple Model of Spiking Neurons. IEEE Transactions on Neural Networks, 14(6), 1569-1572.

Загрузки

Опубликован

2025-04-28

Как цитировать

Nurimov , P. (2025). SHAXSNI OVOZI ORQALI TANIB OLISH MASALASIDA NEYROMORFIK TEXNOLOGIYALARNI QO’LLASH AFZALLIKLARI. Цифровая трансформация и искусственный интеллект, 3(2), 216–219. извлечено от https://dtai.tsue.uz/index.php/dtai/article/view/v3i233