ELEKTRON AXBOROT RESURSLARIDA MATNLI MA’LUMOTLARNI INTELLEKTUAL TAHLIL QILISH ALGORITMLARI VA DASTURIY TA’MINOTI

Авторы

  • Dildora Muxammadieva Muxammad al-Xorazmiy nomidagi TATU
  • Nigora Abduraxmanova Muxammad al-Xorazmiy nomidagi TATU

Ключевые слова:

elektron axborot resurslari (EAR), NLTK, spaCy, Gensim, scikit-learn, TensorFlow, Apache Lucene

Аннотация

Ushbu maqolada elektron axborot resurslari (EAR) tarkibidagi matnli ma’lumotlarni intellektual tahlil qilish uchun qo‘llaniladigan zamonaviy algoritmlar va dasturiy ta’minotlar ko‘rib chiqiladi. Ushbu hujjatda tabiiy tilni qayta ishlashning tokenlash, lemmatizatsiya, sintaktik tahlil va tematik modellashtirish kabi asosiy usullari ko‘rib chiqiladi. Bundan tashqari, ushbu maqolada matn tahlili masalalarida keng qo‘llaniladigan tasniflash, klasterlash, tonallik tahlili va axborot qidirish algoritmlari ko‘rib chiqiladi. Matnlarni intellektual tahlil qilishning turli masalalarini yecha oladigan NLTK, spaCy, Gensim, scikit-learn, TensorFlow va Apache Lucene kabi dasturiy vositalarga alohida e’tibor qaratilmoqda. Ushbu maqolada ushbu algoritmlar va vositalardan hujjatlarni tasniflash, kalit so‘zlarni ajratib olish va tonallikni tahlil qilish kabi kundalik vazifalarda foydalanish misollari ko‘rib chiqiladi. Katta hajmdagi ma’lumotlarni qayta ishlashda matnli ma’lumotlarni intellektual tahlil qilish muammolari va imkoniyatlari muhokama qilinadi.

Библиографические ссылки

Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T., 1997. Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89 (1–2), 31–71.

Astorino, A., Avolio, M., Fuduli, A., 2022. A maximum-margin multisphere approach for binary multiple instance learning. European J. Oper. Res. 299 (2), 642–652.

Mangasarian, O.L., Wild, E.W., 2008. Multiple instance classification via successive linear programming. J. Optim. Theory Appl. 137 (3), 555–568.

Blei, D.M., Ng, A.Y., Jordan, M.I., 2003. Latent dirichlet allocation. J. Mach. Learn. Res. 3 (Jan), 993–1022.

Blei, D.M., Kucukelbir, A., McAuliffe, J.D., 2017. Variational inference: A review for statisticians. J. Am. Statist. Assoc. 112 (518), 859–877.

Chen, Y., 2015. Convolutional Neural Network for Sentence Classification (Master’s thesis). University of Waterloo.

Ilse, M., Tomczak, J., Welling, M., 2018. Attention-based deep multiple instance learning. In: International Conference on Machine Learning. PMLR, pp. 2127–2136.

Luo, Z., Guillory, D., Shi, B., Ke, W., Wan, F., Darrell, T., Xu, H., 2020. Weakly-supervised action localization with expectation-maximization multi-instance learning. In: European Conference on Computer Vision. Springer, pp. 729–745.

Shi, X., Xing, F., Xie, Y., Zhang, Z., Cui, L., Yang, L., 2020. Loss-based attention for deep multiple instance learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. pp. 5742–5749.

Grootendorst, M., 2022. BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794.

Venugopalan, M., Gupta, D., 2022. An enhanced guided LDA model augmented with BERT based semantic strength for aspect term extraction in sentiment analysis. Knowl.-Based Syst. 246, 108668.

Загрузки

Опубликован

2025-08-09

Как цитировать

Muxammadieva , D., & Abduraxmanova , N. (2025). ELEKTRON AXBOROT RESURSLARIDA MATNLI MA’LUMOTLARNI INTELLEKTUAL TAHLIL QILISH ALGORITMLARI VA DASTURIY TA’MINOTI. Цифровая трансформация и искусственный интеллект, 3(4), 91–99. извлечено от https://dtai.tsue.uz/index.php/dtai/article/view/v3i413