KORXONA SAVDO MA’LUMOTLARINI INTELLEKTUAL TAHLIL QILISH UCHUN MA’LUMOTLARNI TO‘PLASH, QAYTA ISHLASH VA DASTLABKI ISHLOV BERISH

Authors

  • Raximov Nodir Odilovich Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti
  • Baydullayev Ruslan Tuylibayevich Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti
  • Baydullayeva Dildora Tuylibayevna Toshkent shahridagi Turin politexnika universiteti

Keywords:

ma’lumotlar bazasi, intellektual tahlil, ma’lumotlar ombori, ETL, OLAP, Data Warehouse, CRM, ERP, normallashtirish, Mean usuli, Z-Score, modellashtirish, business intelligence, savdo tizimlari

Abstract

Ushbu maqolada korxonalar faoliyatida savdo ma’lumotlarini intellektual tahlil qilishning nazariy va amaliy jihatlari yoritilgan. Tadqiqotda ma’lumotlar bazasini tashkil etish va modellashtirishning zamonaviy yondashuvlari, shu jumladan ETL (Extract, Transform, Load) jarayonlari, ma’lumotlar ombori (Data Warehouse) arxitekturasi hamda OLAP texnologiyalarining qo‘llanilishi tahlil qilingan. Shuningdek, maqolada Mean usuli asosida savdo ma’lumotlarini statistik qayta ishlash va Z-Score normallashtirish natijalari keltirilgan. Ma’lumotlar tahlili korxona savdo samaradorligini oshirish, resurslardan oqilona foydalanish va boshqaruv qarorlarini ilmiy asosda qabul qilish imkonini beruvchi muhim bosqich sifatida baholangan. Tadqiqot natijalari shuni ko‘rsatadiki, ma’lumotlar omborini to‘g‘ri modellashtirish va intellektual tahlil metodlarini qo‘llash orqali korxonalarda Business Intelligence (BI) tizimlarini samarali yo‘lga qo‘yish mumkin.

References

Liu Y., Lee Y., Chen A. N. K. Evaluating the effects of task-individual-technology fit in multi-DSS models context: A two-phase view. Decision Support Systems, 2011, 51(3): 688–700.

Inmon W. H. Building the Data Warehouse. John Wiley & Sons, 2016.

Kimball R., Ross M. The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling. Wiley, 2013.

Han J., Kamber M., Pei J. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2022.

Codd E. F. Providing OLAP (On-line Analytical Processing) to User-Analysts: An IT Mandate. E. F. Codd Associates, 1993.

Elmasri R., Navathe S. B. Fundamentals of Database Systems. Pearson Education, 2020.

Chen H., Chiang R. H. L., Storey V. C. Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 2012.

D.T.Baydullayeva, R.T.Baydullayev, “Korxonalarda mahsulot savdosiga oid ma’lumotlarni tahlil qilishning zamonaviy intelektual yondashuvlari”, “Muhandislik va iqtisodiyot” jurnali. Vol. 3 No. 10, Oktyabr 2025, -b 86-89. (ISSN: 2992-8982)

D.R.Xasanov, M.Tojiyev, O.D.Primqulov. Gradient descent in machine learning. IEEE International Conference on Information Science and Communications Technologies: applications, trends and opportunities (ICISCT-2021).

Rakhimov N.O., Xasanov D.R. Selection of Crops by Region using Machine Learning Classification Algorithms. // Ilm-fan va innovatsion rivojlanish jurnali. Volume 7, Issue 2; April 2024, -p. 36-47. https://cyberleninka.ru/article/n/selection-of-crops-by-region-using-machine-learning-classification-algorithms

N.Rahimov, D.Khasanov. The Implementation of Machine Learning and Deep Learning Algorithms for Crop Yield Prediction in Agriculture. // Bulletin of TUIT: Management and Communication Technologies, Volume 2, No. 2023. https://uzjurnal.uz/2/2023/2/index?issue=9

N.Rakhimov, D.Khasanov, H.Abdulhakimov. Prediction the Yield of Grain Crops using Basic Machine Learning Algorithms. // Raqamli transformatsiya va sun’iy intellekt ilmiy jurnali, Volume 2, Issue 5. https://dtai.tsue.uz/index.php/dtai/article/view/v2i57

N.Raximov, J.Kuvandikov, D.Khasanov, “The importance of loss function in artificial intelligence”, International Conference on Information Science and Communications Technologies (ICISCT 20222), DOI: 10.1109/ICISCT55600.2022.10146883

Rakhimov N.O., Khasanov D.R., Xafizadinov U.T. Application of the Algorithm for Enrichment the Knowledge Graph with Numerical Predicates in Decision-Making Support Systems. // Digital Transformation and Artificial Intelligence: Problems, Innovations and Trends 1st International Scientific-Practical Conference.

Rakhimov N.O., Khasanov D.R., Shirinboyev R.Sh., Xafizadinov U.T. Evaluating the Performance of Convolutional Neural Networks and Hybrid CNN-SVM Models for Symbol Recognition in Complex Datasets. // Digital Transformation and Artificial Intelligence: Problems, Innovations and Trends 1st International Scientific-Practical Conference. https://dtai.tsue.uz/index.php/DTAI2024/article/view/shirinbayev2

Rakhimov N.O., Khasanov D.R. The Implementation of Decision Tree Algorithm in Data Mining. // International Scientific Journal Science and Innovation, Special Issue: “Digital Technologies: Problems and Solutions of Practical Implementation in the Spheres”, 2023

O.D.Primqulov, M.R.Tojiyev, D.R.Khasanov. Image segmentation in openCV and python. // ACADEMICIA. An International Multidisciplinary Research Journal (ISSN 2249-7137). Volume 10, Issue 12. December

Downloads

Published

2025-10-28

How to Cite

KORXONA SAVDO MA’LUMOTLARINI INTELLEKTUAL TAHLIL QILISH UCHUN MA’LUMOTLARNI TO‘PLASH, QAYTA ISHLASH VA DASTLABKI ISHLOV BERISH. (2025). DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 3(5), 258-264. https://dtai.tsue.uz/index.php/dtai/article/view/v3i535