TIBBIY TASVIRLAR ASOSIDA TERI KASALLIKLARINI SAMARALI TASNIFLASH USULLARI
Keywords:
Teri kasalliklari, Klinik tashxislash, Raqamli tasniflash yondashuvlari, Tasvirlarni oldindan qayta ishlash, Segmentlash, Tasniflash, ML, DLAbstract
Teri kasalliklari har yili millionlab insonlarning umriga zomin bo‘layotgan global sog‘liqni saqlash muammolaridan biri bo‘lib qolmoqda. Teri kasalliklarini erta aniqlash, to‘g‘ri va aniq tashxislash kasallikni oldini olishda juda muhim sanaladi. Bugungi kunda teri kasalliklarini erta aniqlash uchun ko‘plab tadqiqotlar olib borilmoqda. Teri kasalliklarini erta bosqichlarda tasniflash uchun kompyuter yordamida avtomatik aniqlash texnikasidan foydalangan holda, olimlar tomonidan bir qancha yechimlar taklif qilinmoqda. Ushbu maqolada an’anaviy mashinani o‘qitish (ML) va chuqur o‘qitish (DL) usullariga asoslangan ba’zi teri kasalliklarini aniqlashning turli usullari o‘rganib chiqildi. O‘rganilgan ma’lumotlar asosida ushbu usullar uchun tadqiqotlar bo‘shlig‘i umumlashtirildi. Tadqiqot davomida kuzatilgan asosiy muammolar teri tasvirini olish, olingan tasvirlarga oldindan qayta ishlov berish muammosi, ma’lumotlar muvozanati muammosi, xususiyatlarni ajratib olish usullarining xilma-xilligi, klassifikator parametrlarini optimallashtirish, tasvir segmentatsiyasi va tasniflashning umumiy texnikasi kabilardan iborat. Umumiy qilib aytganda, ushbu tadqiqot ishining asosiy maqsadi teri kasalliklarini aniqlash uchun qo‘llaniladigan mavjud usullarni o‘rganish. Shuningdek tadqiqotchilarga yaxshiroq yechimlarni topishga yordam beradigan ML va DL modellarini qo‘llash bo‘yicha tadqiqotlar bo‘shlig‘ini to‘ldirish, tasniflashdagi mavjud qiyinchiliklarni va so‘nggi yutuqlarni topish hisoblanadi.
References
Burden of skin disease – https://www.aad.org/member/clinical-quality/clinical-care/bsd
Skin conditions by the numbers – https://www.aad.org/media/stats-numbers
Rahman Attar, Guillem Hurault, Zihao Wang, Ricardo Mokhtari, Kevin Pan, Bayanne Olabi, Eleanor Earp, Lloyd Steele, Hywel C. Williams, Reiko J. Tanaka “Reliable Detection of Eczema Areas for Fully Automated Assessment of Eczema Severity from Digital Camera Images” https://doi.org/10.1016/j.xjidi.2023.100213[5]
Elisabeth V. Goessinger, Philippe Gottfrois, Alina M. Mueller, Sara E. Cerminara, Alexander A. Navarini “Image Based Artifcial Intelligence in Psoriasis Assessment: The Beginning of a New Diagnostic Era?” American Journal of Clinical Dermatology (2024) 25:861–872 https://doi.org/10.1007/s40257-024-00883-y
Kimberley Yu, BA, Maha N. Syed, MBBS, Elena Bernardis, PhD, Joel M. Gelfand, MD, MSCE “Machine Learning Applications in the Evaluation and Management of Psoriasis: A Systematic Review” 2020 Aug 31;5(4):147–159. doi: 10.1177/2475530320950267
Cortés Verdú, R.; Pego-Reigosa, J.M.; Seoane-Mato, D.; Morcillo Valle, M.; Palma Sánchez, D.; Moreno Martínez, M.J.; Mayor González, M.; Atxotegi Sáenz de Buruaga, J.; Urionagüena Onaindia, I.; Blanco Cáceres, B.A.; et al. Prevalence of systemic lupus erythematosus in Spain: Higher than previously reported in other countries? Rheumatology 2020, 59, 2556–2562. [Google Scholar] [PubMed]
Iciar Usategui, Yoel Arroyo, Ana María Torres, Julia Barbado, Jorge Mateo “Systemic Lupus Erythematosus: How Machine Learning Can Help Distinguish between Infections and Flares” Bioengineering 2024, 11(1), 90; https://doi.org/10.3390/bioengineering11010090
Latest skin cancer data – https://www.wcrf.org/preventing-cancer/cancer-statistics/skin-cancer-statistics/
Hindistonda bazal hujayrali karsinomani davolash - https://bit.ly/3Ybz4Aj
Terining yassi hujayrali karsinomasi - https://mayocl.in/4f5yhbd
H. Zaynidinov, L. Xuramov, D. Khodjaeva “Intelligent algorithms of digital processing of biomedical images in wavelet methods” Artificial Intelligence, Blockchain, Computing and Security Volume 2, 2023,https://www.taylorfrancis.com/chapters/edit/10.1201/9781032684994-105/intelligent-algorithms-digital-processing-biomedical-images-wavelet-methods-zaynidinov-xuramov-khodjaeva
What is Normalization in Machine Learning? A Comprehensive Guide to Data Rescaling - https://www.datacamp.com/tutorial/normalization-in-machine-learning
Normalization: The First Step in Image Preprocessing - https://www.linkedin.com/pulse/normalization-first-step-image-preprocessing-datavalley-ai-luw1c
Manoj Diwakar, ManojKumar, “A review on CT image noise and its denoising”, Biomedical Signal Processing and Control 42 (2018) 73–88
Rajesh Patil, Dr. Surendra Bhosale “Medical Image Denoising Techniques: A Review” Volume 4, Issue 1
Edge Detection in Image Processing: An Introduction - https://blog.roboflow.com/edge-detection/
Different Morphological Operations in Image Processing - https://www.geeksforgeeks.org/different-morphological-operations-in-image-processing/
Hari Mohan Rai, Bobokhonov Akhmadkhon Kholmirzokhon ugli,Soliev Akbar Utkirovich “Precision Cancer Classification: A Brief Survey of ArtificialIntelligence Advancements” Iqtisodiyot va zamonaviy texnologiya 2024.
Imran, Azhar & Nasir, Arslan & Bilal, Muhammad & Alzahrani, Abdulkareem & Almuhaimeed, Abdullah. (2022). Skin Cancer Detection Using Combined Decision of Deep Learners. IEEE Access. PP. 1-1. 10.1109/ACCESS.2022.3220329.
Akhatov A., Renavikar A., Rashidov A. “Optimization of the database structure based on Machine Learning algorithms in case of increased data flow” Proceedings of the International Conference on Artificial Intelligence, Blockchain, Computing And Security (ICABCS 2023), Gr. N01 Da, Up, India, 24-25 February 2023
Moataz, Laila & Salama, Gouda & Elazeem, Mohamed. (2021). Skin Cancer Diseases Classification using Deep Convolutional Neural Network with Transfer Learning Model. Journal of Physics: Conference Series. 2128. 012013. 10.1088/1742-6596/2128/1/012013.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Akhmadkhon Bobokhonov, Latif Xuramov, Akbar Rashidov

This work is licensed under a Creative Commons Attribution 4.0 International License.