ТАСВИР КОНТРАСТИНИ ОШИРИШ УСУЛИ ВА КОНТРАСТ БАҲОЛАШ МЕЗОН ОПТИМАЛ ЖУФТЛИГИ
Ключевые слова:
баҳолаш мезони, гамма коррекция, гистограмма текислаш, Ҳаралик, контраст ошириш, рақамли тасвир, RMS, GCFАннотация
Ҳозирги кунда мултимедиа қурилмалари ривожлангани сари рақамли тасвирлар сони ҳам кескин ўсиб бормоқда. Айрим ҳолларда ушбу рақамли тасвир контрасти етарли даражада бўлмаслиги сабабли, визуал сифатга жавоб бермайди. Яъни таҳлил қилиш учун етарли ахборот бермайди. Шу сабабдан рақамли тасвирнинг контрастини ошириш масаласи долзарб ҳисобланади. Мазкур тадқиқот ишида 20 та контраст ошириш усули фойдаланилиб, натижада ҳосил бўлган тасвирлар RMS, Ҳаралик ва GCF эталонсиз баҳолаш мезонлари билан баҳоланади. Ушбу тадқиқот ишининг асосий мақсади контраст ошириш усул ва контраст баҳолаш мезон оптимал жуфтлигини аниқлаш.
Библиографические ссылки
Zhang, Peipei. (2022). Image Enhancement Method Based on Deep Learning. Mathematical Problems in Engineering. 2022. 1-9. 10.1155/2022/6797367.
Raj P, Nagpal S (2016) A Novel Method for Contrast Enhancement with Colour Preservation. Adv Robot Autom 5: 144. doi: 10.4172/2168-9695.1000144
Wu, Xiaomeng & Kawanishi, Takahito & Kashino, Kunio. (2020). Reflectance-Guided, Contrast-Accumulated Histogram Equalization. 2498-2502. 10.1109/ICASSP40776.2020.9054004.
P. J. Bex and W. Makous, ‘‘Spatial frequency, phase, and the contrast of natural images,’’ J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 19, no. 6, pp. 1096–1106, 2002.
Ionescu, Catalin & Fosalau, Cristian & Petrisor, Daniel. (2014). A study of changes in image contrast with various algorithms. EPE 2014 - Proceedings of the 2014 International Conference and Exposition on Electrical and Power Engineering. 100-104. 10.1109/ICEPE.2014.6969876.
Oak, Pratik. “Contrast Enhancement of brain MRI images using histogram based techniques.” (2013). Medicine, Computer Science
Beghdadi, Azeddine & Qureshi, Muhammad & Amirshahi, Seyed Ali & Chetouani, Aladine & Pedersen, Marius. (2020). A Critical Analysis on Perceptual Contrast and Its Use in Visual Information Analysis and Processing. IEEE Access. PP. 1-1. 10.1109/ACCESS.2020.3019350.
Gade, P. & Walsh, P.. (2013). Use of GCF aesthetic measure in the evolution of landscape designs. IJCCI 2013 - Proceedings of the 5th International Joint Conference on Computational Intelligence. 83-90.
Gowthami R., K.Santhi, "Contrast Enhancement Using Bi-Histogram Equalization With Brightness Perservation", International Journal of Computer Trends and Technology (IJCTT), Vol.4, Issue5,1010-1014, May 2013.
Sultan, Duha & Yonis, Alhan. (2019). Contrast Enhancement in Gray Level Images. JOURNAL OF EDUCATION AND SCIENCE. 28. 259-281. 10.33899/edusj.2019.161214.
Shah, Ghous & Khan, Amjad & Shah, Asghar & Raza, Mudassar & Sharif, Muhammad. (2015). A review on image contrast enhancement techniques using histogram equalization. Science International. 27. 1297-1302.
M Kim, MG Chung, Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement. Consum. Electron. IEEE Trans. 54(3), 1389–1397 (2008)
S-C Huang, F-C Cheng, Y-S Chiu, Efficient contrast enhancement using adaptive gamma correction with weighting distribution. Image Process. IEEE Trans. 22(3), 1032–1041 (2013)
Gupta, Bhupendra, and Mayank Tiwari. Minimum mean brightness error contrast enhancement of color images using adaptive gamma correction with color preserving framework. Optik 127, no. 4 (2016): 1671-1676.
Kim, Yeong-Taeg. Quantized bi-histogram equalization. In 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 2797-2800. IEEE, 1997.
Wang, Qing, and Rabab K. Ward. Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE transactions on Consumer Electronics 53, no. 2 (2007): 757-764.
A. P. Athane, Dr. S. R. Prasad. (2021). Image Enhancement Based on Opencv Using Python 2.7 – Review. International Advanced Research Journal in Science, Engineering and Technology.Vol. 8, Issue 5. DOI: 10.17148/IARJSET.2021.8575
Widyantara, I Made. (2016). Image Enhancement Using Morphological Contrast Enhancement for Video Based Image Analysis. 10.1109/ICODSE.2016.7936115.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2023 Маматов Нарзулло Солиджонович, Пулатов Ғиёс Гофуржонович, Жалелова Малика Моятдин қизи
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.