MA’LUMOTLARNI INTELLEKTUAL TAHLIL QILISH UCHUN GENETIK ALGORITMLAR VA ULARNI QO‘LLANILISHI

Авторы

  • Fayzullo Nazarov Samarqand davlat Universiteti
  • Mehriddin Nurmamatov Samarqand davlat Universiteti
  • Shohruh Sariyev Samarqand davlat Universiteti

Ключевые слова:

Genetik algoritmlar, ma’lumotlarni intellektual tahlil qilish, mashinaviy o‘qitish, populyatsiya, seleksiya, krossover, mutatsiya, optimallashtirish

Аннотация

Mazkur tadqiqot ishida ma’lumotlarni intellektual tahlil qilish uchun genetik algoritmlar va ularning imkoniyatlari batafsil keltirib o‘tilgan. Hozirgi vaqtga kelib aksariyat sohalarda inson bajaradigan jarayonlarni axborot tizimlari va mashinali tizimlar asosida bajarilmoqda. Buning natijasida boshqaruv, ijtimoiy-iqtisodiy jarayonlarni avtomatlashtirish va avtomatlashtirilgan tizimlar tarkibidagi ma’lumotlarni intellektual tahlil qilish keskin rivojlanib bormoqda. Bundan kelib chiqib aholiga xizmat ko‘rsatishni yaxshilash va oldindan jarayonlarni boshqarishni optimallashtirish dolzarb masalalardan biri hisoblanadi. Jarayonlarni boshqarish va optimallashtirish masalalarini hal qilishda genetik algoritmlar samarali vosita bo‘lib xizmat qiladi. Bundan kelib chiqib mazkur ilmiy maqolada ma’lumotlarni intellektual tahlil qilish uchun genetik algoritm texnologiyalarining mexanizmlari va ularni qo‘llanlilishi bo‘yicha tadqiqot ishi amalga oshirilgan. Bunda genetik algoritmlar, ishlash mexanizmlari, matematik modellari va sohalarga qo‘llanilishining nazariy asoslari keltirib o‘tilgan.

Библиографические ссылки

AA Rustamovich, N Mekhriddin, N Fayzullo , N Sаbhаrwаl "Intеlligеnt sуstеm оf lаbоr mаrkеt rеgulаtiоn bаsеd оn thе еvоlutiоnаrу mоdеling оf еmplоуmеnt" Prосееdings - 2022 4th Intеrnаtiоnаl Соnfеrеnсе оn Аdvаnсеs in Соmputing, Соmmuniсаtiоn Соntrоl аnd Nеtwоrking, IСАС3N 2022, 2022, с. 2534–2539. DOI. 10.1109/ICAC3N56670.2022.10074149

Bayraktar, T., Ersoz, F., & Kubat, C. Effects of memory and genetic operators on Artificial Bee Colony algorithm for Single Container Loading problem. Applied Soft Computing, 108, Article 107462. (2021).

Michal Antkiewicz, Paweł B. Myszkowski Balancing Pareto Front exploration of Non-dominated Tournament Genetic Algorithm (B-NTGA) in solving multi-objective NP-hard problems with constraints Information Sciences, Volume 667, May 2024, Pages 120400.

John McCall Genetic algorithms for modelling and optimisation School of Computing, Robert Gordon University, Aberdeen, Scotland, UK Received 27 February 2004; received in revised form 7 July 2004.

Nurmаmаtоv M.Q., Modern methods of increasing the efficiency of the labor market. // “ILM-FAN” electron jurnali. UZA. –b. 373-383. 2022. http://uza.uz/posts/363383.

Еzhilаrаsiе, R., Umаmаkеswаri, А., Rеddу, M. & Bаlаkrishnаn, P. Grеfеnstеttе Biаs bаsеd gеnеtiс аlgоrithm fоr multi-sitе оff lоаding using dосkеr соntаinеr in еdgе соmputing. Jоurnаl Оf Intеlligеnt & Fuzzу Sуstеms. 36, 2419-2429 (2019,3).

Nao Hu, Peilin Zhou, Jianguo Yang Comparison and combination of NLPQL and MOGA algorithms for a marine medium-speed diesel engine optimisation Energy Conversion and Management1 February 2017.

E. Cantú-Paz A survey of parallel genetic algorithms Calculateurs Parallèles Reseaux et Systems Repartis, 10 (2) (1998), pp. 141-171.

Lakhlifa Sadek, Hamad Talibi Alaoui Application of MGA and EGA algorithms on large-scale linear systems of ordinary differential equations Journal of Computational ScienceJuly 2022.

Аkhаtоv А.R., Nurmаmаtоv M.Q., Mаrdоnоv D.R., Nаzаrоv F.M. Imprоvеmеnt оf mаthеmаtiсаl mоdеls оf thе rаting pоint sуstеm оf еmplоуmеnt // Sсiеntifiс jоurnаl Sаmаrkаnd stаtе univеrsitу. 2021. – №1(125). –P. 100-107.

H Döhner, KW Pratz, CD DiNardo, et al. Genetic risk stratification and outcomes among treatment-naive patients with AML treated with venetoclax and azacitidine Blood, 144 (21) (2024), pp. 2211-2222.

Nurmamatov M.Q., Sariyev Sh.N., Genetik algoritmlar asosida turli sinfli ma’lumotlarni o‘zaro moslashtirish algoritmlari. Sh.Rashidov nomidagi Samarqand Davlat Universiteti Ilmiy axborotnomasi. 3-son (145/1) aniq va tabiy fanlar yo‘nalishi. 77-83 b.

M. Chen, J. Wen, Y.-J. Song, et al. A population perturbation and elimination strategy based genetic algorithm for multi-satellite tt&c scheduling problem Swarm Evol. Comput., 65 (2021), p. 100912.

Nurmamatov, M., Kulmirzayeva, Z. “Development of an Intelligent System for Optimization of Employment Information Using Genetic Algorithms” AIP Conference Proceedings, 2024, 3147(1), 040006. https://doi.org/10.1063/5.0210279

P.K. Muhuri, A. Rauniyar Immigrants based adaptive genetic algorithms for task allocation in multi-robot systems Int. J. Comput. Intell. Appl., 16 (04) (2017), p. 1750025.

Axatov A.R., Nurmamatov M.Q., Nazarov F.M. 2022. “ Mathematical Models of Coordination of Population Employment in the Labor Market” // Ra journal of applied research. India / – Vol. 8, Issue 2. – Pp. 111–119. DOI:https://doi.org/10.47191/rajar/v8i2.09

Akhatov A.R., Nurmamatov M.Q., Mardonov D. 2020. “Mathematical models of the process of monitoring the social status and employment of the population”, Scientific and technical journal of the Fergana Polytechnic Institute. - Volume 24, No. 5. -pp. 150–157.

Mohsen Shojaee, Siamak Noori , Samrad Jafarian-Namin, Arne Johannssen, Hasan Rasay, Assessing the economic-statistical performance of an attribute SVSSI-np control chart based on genetic algorithms computers & Industrial Engineering 197 (2024) 110401.

Muminov B., Egamberdiyev E. OPTIMIZATION OF FUZZY INFERENCE SYSTEMS WITH GENETIC ALGORITHMS //DTAI–2024. – 2024. – Т. 1. – №. DTAI. – С. 250-252.

Загрузки

Опубликован

2024-12-28

Как цитировать

Nazarov, F., Nurmamatov, M., & Sariyev, S. (2024). MA’LUMOTLARNI INTELLEKTUAL TAHLIL QILISH UCHUN GENETIK ALGORITMLAR VA ULARNI QO‘LLANILISHI. Цифровая трансформация и искусственный интеллект, 2(6), 162–168. извлечено от https://dtai.tsue.uz/index.php/dtai/article/view/v2i630